The web is full of anonymous communication that was never meant to be analyzed for authorship attribution.

Stylistics is a form of authorship attribution that relies on the linguistic information found in a document.

Stylistics research has thus far focused on closed-world models, limited to a set of known suspect authors.

Often the closed-world assumption is broken, requiring a solution for forensic analysts and Internet activists who wish to remain anonymous.

Motivation

- The Closed-World Assumption
- Authorship Attribution
- Security & Privacy Applications

Contribution and Application to Security & Privacy

- The *Classify-Verify* method
- An abstaining classification approach that augments authorship classification with a verification step.
- Improves closed-world solutions by replacing misclassifications with “unknown.”
- Performs well in adversarial settings where traditional methods fail without the need to train on adversarial data.

The Sigma Verification method

- Incorporates pairwise distances within the author’s documents.
- Normalizes over the standard deviations of the author’s features.

Security & Privacy Applications

Useful when the target class may absent from the suspect set:
- Authorship Attribution/Verification (this work)
- Website fingerprinting
- Malware family identification

Problem Statement

Definitions:
- D – document of unknown authorship
- A – candidate author
- $A = \{A_1, ..., A_n\}$ – set of candidate authors
- $p = Pr[A \in A]$ – the probability that D's author is in the set of candidates A, denoted the in-set prob. (1 – p is the not-in-set prob.)
- t – verification acceptance threshold

Problems:
- Authorship Attribution: Which $A \in A$ is the author of D?
- The Classify-Verify Problem: given D, A and optionally p:
 - Determine the author $A \in A$ of D,
 - Determine that D's author is not in A (w.r.t. acceptance threshold t)

Classify-Verify

The Classify-Verify Algorithm

Input: Document of suspect author set $A = \{A_1, ..., A_n\}$, target measure to maximize μ.

Optional: in-set prob. p, manual threshold t.

Output: $A_i \in A$, or \perp. otherwise.

- $C_i = \text{classifier trained on } A_i$,
- $V_i = \{V_i(A_1), ..., V_i(A_n)\}$ – verifiers trained on A_i.

1. If t is not set then
 - t – threshold maximizing μ of Classify-Verify cross-validation on A.

2. If $V_i(D) \geq t$ then
 - Return A_i.

Synopsis:

- Train one closed-world classifier C_A over A and n verifiers V_i.
- Classifier D using C_A and let the result be A_i.
- Verify D using V_i.
 - If it accepts, return the author A_i.
 - Otherwise, return \perp, which stands for “none.”

Verification Methods

Classifier-Induced Verifiers

Let P_i denote the ith order statistic of the probability outputs of $C_A(D)$, then:

- P_i – probability of the chosen class.
- P_i-P_i-Diff: difference between chosen and second-to-chosen class probabilities.
- Gap-Conf [Paskov, MIT 2010]: P_i-P_i-Diff based on n 1-vs-all classifiers.

Standalone Verifiers

- distractorest or Sigma verification

Verification Acceptance Threshold t

- p-induced threshold: t is set empirically using cross-validation over the training set, to maximize the target evaluation measure μ (e.g., F1-score) for given in-set prob. p.
- p-Robust: t is set like in p-induced, but to maximize the μ across any p.

Evaluation & Results

- Corpora:
 - EBG: The Extended-Brennan-Greenstadt Adversarial corpus [Brennan et al., ACM Trans. Inf. Secur. Secur. 16:3, 45 authors]
 - Blog: The ICWSM 2009 Spinrider Blog dataset [Jure et al., ICWSM 2010, 50 authors]

- Closed-world classifier: SVM SMO

- Feature set: 500 most common character bigrams

Results:

Distractorest & Sigma Verification

- **Distractorest – V** [Noecker & Ryan, LREC’12]: Verification based on vector distance between A’s centroid D and D, using cosine distance

$$i_r(A_i) = \frac{A_i \cdot D}{||A_i|| \cdot ||D||} = \frac{\sum_{i=1}^{n} A_i \cdot D}{\sum_{i=1}^{n} ||A_i|| \cdot ||D||}$$

Sigma – V^p:

- V^p: enhances distractorest verification with per-feature SMD (V^p) and per-author threshold (V^p) normalization

Distance $|D|$ Test

$$\delta_r(D) = \max_{A_i} \frac{A_i \cdot D}{||A_i|| \cdot ||D||}$$

$$i_r(A_i) = \frac{A_i \cdot D}{||A_i|| \cdot ||D||}$$

Differences in distance calculation and threshold test for V, V^p, and $V^{p'}$ evaluation on the EBG corpus.

ROC curves for V, V^p, and $V^{p'}$ evaluation on the EBG corpus:

Dept. of Computer Science - Drexel University - 3175 JFK Blvd., Philadelphia, PA 19104

Mail: {stoleram, rj443, sa499, greenie}@cs.drexel.edu

WWW: http://psal.cs.drexel.edu