Authorship Verification

Ph.D. Thesis Defense

Ariel Stolerman
Advisor: Dr. Rachel Greenstadt

Department of Computer Science
Drexel University
stolerman@cs.drexel.edu

April 20, 2015
Introduction

Stylometry: The study of linguistic style
- Applied to authorship attribution: Who wrote this document?

Authorship Verification:
- Given a document D and an author A, was D written by A?

Why Verification?
- confidence – how sure are we in the results?
- Tunable rigidity – natural for open-world problems
- Verification can improve classification
Introduction

- **Styloometry**: The study of linguistic style
 - Applied to authorship attribution: *Who wrote this document?*
- **Authorship Verification**:
 - Given a document *D* and an author *A*, was *D* written by *A*?
- **Why Verification?**
 - confidence – how sure are we in the results?
 - Tunable rigidity – natural for open-world problems
 - Verification can improve classification
Introduction

- **Stylometry**: The study of linguistic style
 - Applied to authorship attribution: *Who wrote this document?*
- **Authorship Verification**:
 - *Given a document D and an author A, was D written by A?*
- **Why Verification?**
 - confidence – how sure are we in the results?
 - Tunable rigidity – natural for open-world problems
 - Verification can improve classification
Introduction

- **Stylometry**: The study of linguistic style
 - Applied to authorship attribution: *Who wrote this document?*
- **Authorship Verification**:
 - *Given a document D and an author A, was D written by A?*
- **Why Verification?**
 - confidence – how sure are we in the results?
 - Tunable rigidity – natural for open-world problems
 - Verification can improve classification
Introduction

- **Stylometry**: The study of linguistic style
 - Applied to authorship attribution: *Who wrote this document?*
- **Authorship Verification**:
 - *Given a document D and an author A, was D written by A?*
- **Why Verification?**
 - **confidence** – how sure are we in the results?
 - Tunable rigidity – natural for open-world problems
 - Verification can improve classification
Introduction

- **Stylometry**: The study of linguistic style
 - Applied to authorship attribution: *Who wrote this document?*
- **Authorship Verification**:
 - *Given a document D and an author A, was D written by A?*
- **Why Verification?**
 - **confidence** – how sure are we in the results?
 - Tunable rigidity – natural for open-world problems
 - Verification can improve classification
Introduction

► **Stylometry**: The study of linguistic style
 ▶ Applied to authorship attribution: *Who wrote this document?*

► **Authorship Verification**:
 ▶ *Given a document D and an author A, was D written by A?*

► **Why Verification?**
 ▶ confidence – how sure are we in the results?
 ▶ Tunable rigidity – natural for open-world problems
 ▶ Verification can improve classification
Authorship verification Research:

- **Generalization & Problem Relaxation for Improved Classification**
 - Classification granularity ↔ accuracy & confidence
 - Generalize problem → improve original problem
 - *Native Language vs. Language Family Identification* [SCG13]

- **Stylometry-Based Security Applications**
 - High-level authentication & identification
 - *Active Authentication* [JNJS+13, FSA+13, JNS+13, SFG+14, FSA+14]

- **Open-world settings**
 - The true author may be missing from the set of candidates
 - *The Classify-Verify Algorithm* [SOAG14, SG]
Authorship verification Research:

- Generalization & Problem Relaxation for Improved Classification
 - Classification granularity ↔ accuracy & confidence
 - Generalize problem → improve original problem
 - Native Language vs. Language Family Identification [SCG13]

- Stylometry-Based Security Applications
 - High-level authentication & identification
 - Active Authentication [JNJS+13, FSA+13, JNS+13, SFG+14, FSA+14]

- Open-world settings
 - The true author may be missing from the set of candidates
 - The Classify-Verify Algorithm [SOAG14, SG]
Authorship verification Research:

- **Generalization & Problem Relaxation for Improved Classification**
 - Classification granularity ↔ accuracy & confidence
 - Generalize problem → improve original problem
 - *Native Language vs. Language Family Identification* [SCG13]

- **Stylometry-Based Security Applications**
 - High-level authentication & identification
 - *Active Authentication* [JNJS+13, FSA+13, JNS+13, SFG+14, FSA+14]

- **Open-world settings**
 - The true author may be missing from the set of candidates
 - *The Classify-Verify Algorithm* [SOAG14, SG]
Introduction – Contd.

Authorship verification Research:

- **Generalization & Problem Relaxation for Improved Classification**
 - Classification granularity ↔ accuracy & confidence
 - Generalize problem → improve original problem
 - *Native Language vs. Language Family Identification* [SCG13]

- **Stylometry-Based Security Applications**
 - High-level authentication & identification
 - *Active Authentication* [JNJS13, FSA13, JNS13, SFG14, FSA14]

- **Open-world settings**
 - The true author may be missing from the set of candidates
 - *The Classify-Verify Algorithm* [SOAG14, SG]
Authorship verification Research:

- Generalization & Problem Relaxation for Improved Classification
 - Classification granularity ↔ accuracy & confidence
 - Generalize problem → improve original problem
 - *Native Language vs. Language Family Identification* [SCG13]

- Stylometry-Based Security Applications
 - High-level authentication & identification
 - *Active Authentication* [JNJS+13, FSA+13, JNS+13, SFG+14, FSA+14]

- Open-world settings
 - The true author may be missing from the set of candidates
 - *The Classify-Verify Algorithm* [SOAG14, SG]
Introduction – Contd.

Authorship verification Research:

▷ Generalization & Problem Relaxation for Improved Classification
 ▷ Classification granularity ↔ accuracy & confidence
 ▷ Generalize problem → improve original problem
 ▷ *Native Language vs. Language Family Identification* [SCG13]

▷ Stylometry-Based Security Applications
 ▷ High-level authentication & identification
 ▷ *Active Authentication* [JNJS\(^+\)13, FSA\(^+\)13, JNS\(^+\)13, SFG\(^+\)14, FSA\(^+\)14]

▷ Open-world settings
 ▷ The true author may be missing from the set of candidates
 ▷ *The Classify-Verify Algorithm* [SOAG\(^+\)14, SG]
Authorship verification Research:

- **Generalization & Problem Relaxation for Improved Classification**
 - Classification granularity \leftrightarrow accuracy & confidence
 - Generalize problem \rightarrow improve original problem
 - *Native Language vs. Language Family Identification* [SCG13]

- **Stylometry-Based Security Applications**
 - High-level authentication & identification
 - *Active Authentication* [JNJS$^+$13, FSA$^+$13, JNS$^+$13, SFG$^+$14, FSA$^+$14]

- **Open-world settings**
 - The true author may be missing from the set of candidates
 - *The Classify-Verify Algorithm* [SOAG14, SG]
Authorship verification Research:

- **Generalization & Problem Relaxation for Improved Classification**
 - Classification granularity \leftrightarrow accuracy & confidence
 - Generalize problem \rightarrow improve original problem
 - *Native Language vs. Language Family Identification* [SCG13]

- **Stylometry-Based Security Applications**
 - High-level authentication & identification
 - *Active Authentication* [JNJS$^+$13, FSA$^+$13, JNS$^+$13, SFG$^+$14, FSA$^+$14]

- **Open-world settings**
 - The true author may be missing from the set of candidates
 - *The Classify-Verify Algorithm* [SOAG14, SG]
Authorship verification Research:

- Generalization & Problem Relaxation for Improved Classification
 - Classification granularity ↔ accuracy & confidence
 - Generalize problem → improve original problem
 - Native Language vs. Language Family Identification [SCG13]

- Stylometry-Based Security Applications
 - High-level authentication & identification
 - Active Authentication [JNJS+13, FSA+13, JNS+13, SFG+14, FSA+14]

- Open-world settings
 - The true author may be missing from the set of candidates
 - The Classify-Verify Algorithm [SOAG14, SG]
Authorship verification Research:

- Generalization & Problem Relaxation for Improved Classification
 - Classification granularity ↔ accuracy & confidence
 - Generalize problem → improve original problem
 - *Native Language vs. Language Family Identification* [SCG13]

- Stylometry-Based Security Applications
 - High-level authentication & identification
 - *Active Authentication* [JNJS+13, FSA+13, JNS+13, SFG+14, FSA+14]

- Open-world settings
 - The true author may be missing from the set of candidates
 - *The Classify-Verify Algorithm* [SOAG14, SG]
Outline

1. Introduction
2. Background
3. Native Language Identification
4. Active Authentication
5. Classify-Verify
6. Summary
Stylometry

- Authorship attribution using linguistic style learned from text
- Everyone has a “stylistic fingerprint”
- Domain dominated by AI methods
 - NLP for text quantification
 - Machine learning for classification
- Current state of supervised stylometry: pretty good!
- Authorship Verification: Did A write D?
 - Relatively unexplored
 - Extremely relevant for security & online domains
Stylometry

- Authorship attribution using linguistic style learned from text
- Everyone has a “stylistic fingerprint”
- Domain dominated by AI methods
 - NLP for text quantification
 - Machine learning for classification
- Current state of supervised stylometry: pretty good!
- Authorship Verification: Did A write D?
 - Relatively unexplored
 - Extremely relevant for security & online domains
Stylometry

- Authorship attribution using linguistic style learned from text
- Everyone has a “stylistic fingerprint”
- Domain dominated by AI methods
 - NLP for text quantification
 - Machine learning for classification
- Current state of supervised stylometry: pretty good!
- Authorship Verification: Did A write D?
 - Relatively unexplored
 - Extremely relevant for security & online domains
Stylometry

- Authorship attribution using linguistic style learned from text
- Everyone has a “stylistic fingerprint”
- Domain dominated by AI methods
 - NLP for text quantification
 - Machine learning for classification
- Current state of supervised stylometry: pretty good!
- Authorship Verification: Did A write D?
 - Relatively unexplored
 - Extremely relevant for security & online domains
Stylometry

- Authorship attribution using linguistic style learned from text
- Everyone has a “stylistic fingerprint”
- Domain dominated by AI methods
 - NLP for text quantification
 - Machine learning for classification
- Current state of supervised stylometry: pretty good!
- Authorship Verification: Did A write D?
 - Relatively unexplored
 - Extremely relevant for security & online domains
Stylometry

- Authorship attribution using linguistic style learned from text
- Everyone has a “stylistic fingerprint”
- Domain dominated by AI methods
 - NLP for text quantification
 - Machine learning for classification
- Current state of supervised stylometry: pretty good!
- Authorship Verification: Did A write D?
 - Relatively unexplored
 - Extremely relevant for security & online domains
Stylometry

- Authorship attribution using linguistic style learned from text
- Everyone has a “stylistic fingerprint”
- Domain dominated by AI methods
 - NLP for text quantification
 - Machine learning for classification
- Current state of supervised stylometry: pretty good!
- **Authorship Verification**: Did A write D?
 - Relatively unexplored
 - Extremely relevant for security & online domains
Domain Problems

- **Document** D, documents \mathcal{D}, author A, authors \mathcal{A}
- **Problems:**
 - Most common – closed-world, supervised: Who in \mathcal{A} wrote D?
 - Unsupervised: Segment D (or \mathcal{D}) by authors
 - Verification: Is D written by A?
- Baseline for other problems: mixed open/closed-world stylometry, author profiling
Domain Problems

- Document D, documents \mathcal{D}, author A, authors \mathcal{A}
- Problems:
 - Most common – closed-world, supervised: Who in \mathcal{A} wrote D?
 - Unsupervised: Segment D (or \mathcal{D}) by authors
 - Verification: Is D written by A?
- Baseline for other problems: mixed open/closed-world stylometry, author profiling
Domain Problems

- Document D, documents \mathcal{D}, author A, authors \mathcal{A}
- Problems:
 - Most common – closed-world, supervised: Who in \mathcal{A} wrote D?
 - Unsupervised: Segment D (or \mathcal{D}) by authors
 - Verification: Is D written by A?
- Baseline for other problems: mixed open/closed-world stylometry, author profiling
Domain Problems

- Document D, documents \mathcal{D}, author A, authors \mathcal{A}
- Problems:
 - Most common – closed-world, supervised: Who in \mathcal{A} wrote D?
 - Unsupervised: Segment D (or \mathcal{D}) by authors
 - Verification: Is D written by A?
- Baseline for other problems: mixed open/closed-world stylometry, author profiling
Domain Problems

- Document D, documents \mathcal{D}, author A, authors \mathcal{A}
- Problems:
 - Most common – closed-world, supervised: Who in \mathcal{A} wrote D?
 - Unsupervised: Segment D (or \mathcal{D}) by authors
 - Verification: Is D written by A?
- Baseline for other problems: mixed open/closed-world stylometry, author profiling
JStylo: an Authorship Attribution Framework

- Open-source Java authorship attribution research platform [MAC+12]
 - Define problem → set features → set classifiers → analyze
- Used by Anonymouth for anonymizing documents
- Powered by JGAAP, Weka [Juo, HFH+09]
JStylo: an Authorship Attribution Framework

- Open-source Java authorship attribution research platform \([\text{MAC}^{+}12]\)
 - Define problem → set features → set classifiers → analyze
- Used by Anonymouth for anonymizing documents
- Powered by JGAAP, Weka \([\text{Juo, HFH}^{+}09]\)
JStylo: an Authorship Attribution Framework

- Open-source Java authorship attribution research platform [MAC⁺12]
 - Define problem → set features → set classifiers → analyze
- Used by Anonymouth for anonymizing documents
- Powered by JGAAP, Weka [Juo, HFH⁺09]
JStylo: an Authorship Attribution Framework

- Open-source Java authorship attribution research platform [MAC+12]
 - Define problem → set features → set classifiers → analyze
- Used by Anonymouth for anonymizing documents
- Powered by JGAAP, Weka [Juo, HFH+09]
Outline

1. Introduction
2. Background
3. Native Language Identification
4. Active Authentication
5. Classify-Verify
6. Summary
Native Language Identification

- Generalization & problem relaxation with verification
- Definitions:
 - L1: native language
 - L2: non-native language
 - LF: language family
- Problem: Given L2 text, what is the author’s L1(s)?
 - L1-L2 transfer effect → LF-L2 transfer effect?
 - Increase L1-ID via LF-ID?
 - Yes – with verification + generalization
Native Language Identification

- Generalization & problem relaxation with verification
- Definitions:
 - L1: native language
 - L2: non-native language
 - LF: language family
- Problem: Given L2 text, what is the author’s L1(s)?
 - L1-L2 transfer effect → LF-L2 transfer effect?
 - Increase L1-ID via LF-ID?
 - Yes – with verification + generalization
Native Language Identification

- Generalization & problem relaxation with verification
- Definitions:
 - L1: native language
 - L2: non-native language
 - LF: language family
- Problem: *Given L2 text, what is the author’s L1(s)?*
 - L1-L2 transfer effect → LF-L2 transfer effect?
 - Increase L1-ID via LF-ID?
 - Yes – with verification + generalization
Native Language Identification

- Generalization & problem relaxation with verification
- Definitions:
 - L1: native language
 - L2: non-native language
 - LF: language family
- Problem: *Given L2 text, what is the author’s L1(s)?>
 - L1-L2 transfer effect \rightarrow LF-L2 transfer effect?
 - Increase L1-ID via LF-ID?
 - Yes – with verification + generalization
Native Language Identification

- Generalization & problem relaxation with verification
- Definitions:
 - L1: native language
 - L2: non-native language
 - LF: language family
- Problem: Given L2 text, what is the author’s L1(s)?
 - L1-L2 transfer effect → LF-L2 transfer effect?
 - Increase L1-ID via LF-ID?
 - Yes – with verification + generalization
Native Language Identification

- Generalization & problem relaxation with verification
- Definitions:
 - L1: native language
 - L2: non-native language
 - LF: language family
- Problem: Given L2 text, what is the author’s L1(s)?
 - L1-L2 transfer effect → LF-L2 transfer effect?
 - Increase L1-ID via LF-ID?
 - Yes – with verification + generalization
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR
- **Method** – correct L1-ID by LF-ID:
 - Apply L1-ID, measure chosen L1 probability \(p \)
 - Set confidence threshold \(t \)
 - If \(p \geq t \): take chosen L1
 - If \(p < t \):
 - Apply LF-ID by Standalone / Trivial / Random
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR
- **Method** – correct L1-ID by LF-ID:
 - Apply L1-ID, measure chosen L1 probability p
 - Set confidence threshold t
 - If $p \geq t$: take chosen L1
 - If $p < t$:
 - Apply LF-ID by Standalone / Trivial / Random
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR

Method – correct L1-ID by LF-ID:
- Apply L1-ID, measure chosen L1 probability p
- Set confidence threshold t
- If $p \geq t$: take chosen L1
- If $p < t$:
 - Apply LF-ID by Standalone / Trivial / Random
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR
- **Method** – correct L1-ID by LF-ID:
 - Apply L1-ID, measure chosen L1 probability \(p \)
 - Set confidence threshold \(t \)
 - If \(p \geq t \): take chosen L1
 - If \(p < t \):
 - Apply LF-ID by Standalone / Trivial / Random
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR
- **Method** – correct L1-ID by LF-ID:
 - Apply L1-ID, measure chosen L1 probability p
 - Set confidence threshold t
 - If $p \geq t$: take chosen L1
 - If $p < t$:
 - Apply LF-ID by Standalone / Trivial / Random
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR
- **Method** – correct L1-ID by LF-ID:
 - Apply L1-ID, measure chosen L1 probability p
 - Set confidence threshold t
 - If $p \geq t$: take chosen L1
 - If $p < t$:
 - Apply LF-ID by Standalone / Trivial / Random
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Method

► Corpus: 11 L1s of 3 LFs from ICLEv2
► Features: 4 sets, using syntax and idiosyncrasies
► Classifier: SVM cross-validation, measured TPR
► Method – correct L1-ID by LF-ID:
 ▶ Apply L1-ID, measure chosen L1 probability \(p \)
 ▶ Set confidence threshold \(t \)
 ▶ If \(p \geq t \): take chosen L1
 ▶ If \(p < t \):
 ▶ Apply LF-ID by Standalone / Trivial / Random
 ▶ Reapply L1-ID only among languages in chosen LF
 ▶ Take chosen L1
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR
- **Method** – correct L1-ID by LF-ID:
 - Apply L1-ID, measure chosen L1 probability p
 - Set confidence threshold t
 - If $p \geq t$: take chosen L1
 - If $p < t$:
 - Apply LF-ID by *Standalone* / *Trivial* / *Random*
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Method

- **Corpus**: 11 L1s of 3 LFs from ICLEv2
- **Features**: 4 sets, using syntax and idiosyncrasies
- **Classifier**: SVM cross-validation, measured TPR
- **Method** – correct L1-ID by LF-ID:
 - Apply L1-ID, measure chosen L1 probability p
 - Set confidence threshold t
 - If $p \geq t$: take chosen L1
 - If $p < t$:
 - Apply LF-ID by **Standalone** / **Trivial** / **Random**
 - Reapply L1-ID only among languages in chosen LF
 - Take chosen L1
Native Language Identification – Eval

![Bar chart showing evaluation results for various approaches.]

- L1 w/o fix
- L1 fix w/ standalone
- L1 fix w/ trivial
- L1 fix w/ random

Ariel Stolerman
Authorship Verification
Native Language Identification – Eval

3.67%-6.43% increase in TPR using **Standalone** correction
Active Authentication

- Stylometry-based security application
- Active Authentication
 - The process of continuously verifying a user based on his/her ongoing interaction with the computer
- Problem: Who is at the keyboard?
 - Using real-time stylometric sensors
 - High-paced decision making
 - Natural for verification: doubting the user in front of us
Active Authentication

- Stylometry-based security application
- Active Authentication
 - The process of continuously verifying a user based on his/her ongoing interaction with the computer
- Problem: Who is at the keyboard?
 - Using real-time stylometric sensors
 - High-paced decision making
 - Natural for verification: doubting the user in front of us
Active Authentication

- Stylometry-based security application
- **Active Authentication**
 - The process of continuously verifying a user based on his/her ongoing interaction with the computer
- **Problem**: *Who is at the keyboard?*
 - Using **real-time** stylometric sensors
 - High-paced decision making
 - Natural for verification: doubting the user in front of us
Active Authentication

- Stylometry-based security application
- **Active Authentication**
 - The process of continuously verifying a user based on his/her ongoing interaction with the computer
- **Problem**: *Who is at the keyboard?*
 - Using **real-time** stylometric sensors
 - High-paced decision making
 - Natural for verification: doubting the user in front of us
Active Authentication

- Stylometry-based security application
- **Active Authentication**
 - The process of continuously verifying a user based on his/her ongoing interaction with the computer
- **Problem**: *Who is at the keyboard?*
 - Using **real-time** stylometric sensors
 - High-paced decision making
 - Natural for verification: doubting the user in front of us
Active Authentication

- Stylometry-based security application
- **Active Authentication**
 - The process of continuously verifying a user based on his/her ongoing interaction with the computer
- **Problem:** *Who is at the keyboard?*
 - Using **real-time** stylometric sensors
 - High-paced decision making
 - Natural for verification: doubting the user in front of us
Active Authentication – Method

- **Corpus**: Active Linguistic Authentication Dataset \[\text{[JNJS}^{+}13\]\]
- **Features**: variation of *Writeprints* \[\text{[AC08]}\]
 - Track special keys: backspace (\(\beta\)), shift (\(\sigma\))...
 - Apply them: \(\text{ch}\beta\beta\text{Cch}\beta\beta\text{hicago} \Rightarrow \text{Chicago}\)
- **Classifier**: SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, ..., 1000
- **Goal**: use in multi-modal systems
Active Authentication – Method

- **Corpus**: Active Linguistic Authentication Dataset [JNJS+13]
- **Features**: variation of *Writeprints* [AC08]
 - Track special keys: backspace (β), shift (σ)...
 - Apply them: chββCchββhicago ⇒ Chicago
- **Classifier**: SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, ..., 1000
- **Goal**: use in multi-modal systems
Active Authentication – Method

- **Corpus:** Active Linguistic Authentication Dataset [JNJS+13]
- **Features:** variation of *Writeprints* [AC08]
 - Track special keys: backspace (β), shift (σ)...
 - Apply them: $ch\beta\beta Cch\beta\beta hicago \Rightarrow Chicago$
- **Classifier:** SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, ..., 1000
 - **Goal:** use in multi-modal systems
Active Authentication – Method

- **Corpus**: Active Linguistic Authentication Dataset [JNJS+13]
- **Features**: variation of *Writeprints* [AC08]
 - Track special keys: backspace (β), shift (σ)...
 - Apply them: $ch\beta\betaCch\beta\betahicago \Rightarrow Chicago$
- **Classifier**: SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, ..., 1000
- **Goal**: use in multi-modal systems

Ariel Stolerman
Authorship Verification
Active Authentication – Method

- **Corpus**: Active Linguistic Authentication Dataset [JNJS+13]
- **Features**: variation of *Writeprints* [AC08]
 - Track special keys: backspace (β), shift (σ)...
 - Apply them: $\text{ch}\beta\beta\text{C} \text{ch}\beta\beta\text{hicago} \Rightarrow \text{Chicago}$
- **Classifier**: SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, ..., 1000
 - **Goal**: use in multi-modal systems
Active Authentication – Method

► Corpus: Active Linguistic Authentication Dataset [JNJS+13]
► Features: variation of Writeprints [AC08]
 ▶ Track special keys: backspace (β), shift (σ)...
 ▶ Apply them: chββCchββhicago ⇒ Chicago
► Classifier: SVM trained on 67 users
► Method
 ▶ Initial day/words-based windows, 14 users: 88–93% accuracy
 ▶ Here: time-based overlapping sliding windows
 ▶ Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 ▶ minimum characters/window: 100, 200, ..., 1000
 ▶ Goal: use in multi-modal systems
Active Authentication – Method

- **Corpus:** Active Linguistic Authentication Dataset [JNJS+13]
- **Features:** variation of *Writeprints* [AC08]
 - Track special keys: backspace (β), shift (σ)...
 - Apply them: \texttt{chββCchββhicago} ⇒ Chicago
- **Classifier:** SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, ..., 1000
 - **Goal:** use in multi-modal systems
Active Authentication – Method

- **Corpus**: Active Linguistic Authentication Dataset [JNJS+13]
- **Features**: variation of *Writeprints* [AC08]
 - Track special keys: backspace (β), shift (σ)...
 - Apply them: \(chββCchββhicago \Rightarrow Chicago \)
- **Classifier**: SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, ..., 1000
- **Goal**: use in multi-modal systems
Active Authentication – Method

- **Corpus**: Active Linguistic Authentication Dataset [JNJS+13]
- **Features**: variation of *Writeprints* [AC08]
 - Track special keys: backspace (β), shift (σ)...
 - Apply them: \(ch\beta\beta Cch\beta\beta hicago\) ⇒ Chicago
- **Classifier**: SVM trained on 67 users
- **Method**
 - Initial day/#words-based windows, 14 users: 88–93% accuracy
 - Here: time-based overlapping sliding windows
 - Size (overlap): 10s, 30s, 60s (10s) & 5m, 10m, 20m (60s)
 - minimum characters/window: 100, 200, …, 1000
- **Goal**: use in multi-modal systems
Active Authentication – Method

30-second windows, 10-seconds overlap:

User stream: ununited american sainβorooseveltmorris otrinity71o...
Active Authentication – Eval

Availability by minimum char thresholds:

- Larger window ⇒ higher decision availability
- Windows < 5 mins – not very useful
Active Authentication – Eval

Availability by minimum char thresholds:

- Larger window ⇒ higher decision availability
- Windows < 5 mins – not very useful
Active Authentication – Eval

Average FAR/FRR:
- Strict sensors
- Larger window ⇒ less affected by char/win thresholds

![Graphs showing FAR and FRR vs. window size and minimum characters per window](image)

- FAR (False Accept Rate)
 - Window Size (Seconds)
 - Minimum characters per window

- FRR (False Reject Rate)
 - Window Size (Seconds)
 - Minimum characters per window
Motivation

You're Fired!

Ariel Stolerman

Authorship Verification
The web is full of anonymous communication
 - Can use stylometry to deanonymize it

Pseudonymous documents published on the web:
 - Virtually ∞ suspects
 - Or lack of training data

⇒ problem for:
 - Analysts: confidence in suspect pool
 - Users: may be falsely accused of authorship
The web is full of anonymous communication
- Can use stylometry to deanonymize it
- Pseudonymous documents published on the web:
 - Virtually ∞ suspects
 - Or lack of training data
- Problem for:
 - Analysts: confidence in suspect pool
 - Users: may be falsely accused of authorship
The web is full of anonymous communication
 - Can use stylometry to deanonymize it

Pseudonymous documents published on the web:
 - Virtually ∞ suspects
 - Or lack of training data

⇒ problem for:
 - Analysts: confidence in suspect pool
 - Users: may be falsely accused of authorship
The web is full of anonymous communication
 - Can use stylometry to deanonymize it

Pseudonymous documents published on the web:
 - Virtually ∞ suspects
 - Or lack of training data

⇒ problem for:
 - Analysts: confidence in suspect pool
 - Users: may be falsely accused of authorship
Motivation – Contd.

- The web is full of anonymous communication
 - Can use stylometry to deanonymize it
- Pseudonymous documents published on the web:
 - Virtually ∞ suspects
 - Or lack of training data
- \Rightarrow problem for:
 - Analysts: confidence in suspect pool
 - Users: may be falsely accused of authorship
The web is full of anonymous communication
 - Can use stylometry to deanonymize it
Pseudonymous documents published on the web:
 - Virtually ∞ suspects
 - Or lack of training data
⇒ problem for:
 - Analysts: confidence in suspect pool
 - Users: may be falsely accused of authorship
The **Classify-Verify problem**: mixed open/closed-world

- Closed set of candidate authors
- Take into account that the author may not be in the set

⇒ **Classify-Verify algorithm**: classification + binary verification

- Intercepts misclassifications
- Tunable rigidity – FAR/FRR
- Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
The *Classify-Verify* problem: mixed open/closed-world

- Closed set of candidate authors
 - Take into account that the author may not be in the set
 - ⇒ *Classify-Verify* algorithm: classification + binary verification
 - Intercepts misclassifications
 - Tunable rigidity – FAR/FRR
 - Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
Motivation – Contd.

- **The Classify-Verify problem**: mixed open/closed-world
 - Closed set of candidate authors
 - Take into account that the author may not be in the set
 - \(\Rightarrow\) **Classify-Verify algorithm**: classification + binary verification
 - Intercepts misclassifications
 - Tunable rigidity – FAR/FRR
 - Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
Motivation – Contd.

- **The *Classify-Verify* problem**: mixed open/closed-world
 - Closed set of candidate authors
 - Take into account that the author may **not be in the set**
- ⇒ **Classify-Verify algorithm**: classification + binary verification
 - Intercepts misclassifications
 - Tunable rigidity – FAR/FRR
 - Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
Motivation – Contd.

- The **Classify-Verify problem**: mixed open/closed-world
 - Closed set of candidate authors
 - Take into account that the author may not be in the set
- \(\Rightarrow \) **Classify-Verify algorithm**: classification + binary verification
 - Intercepts misclassifications
 - Tunable rigidity – FAR/FRR
 - Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
The *Classify-Verify* problem: mixed open/closed-world

- Closed set of candidate authors
- Take into account that the author may not be in the set

⇒ *Classify-Verify* algorithm: classification + binary verification

- Intercepts misclassifications
- Tunable rigidity – FAR/FRR
- Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
Motivation – Contd.

- **The Classify-Verify problem**: mixed open/closed-world
 - Closed set of candidate authors
 - Take into account that the author may **not be in the set**
 - Therefore, the **Classify-Verify algorithm**: classification + binary verification
 - Intercepts misclassifications
 - Tunable rigidity – FAR/FRR
 - Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
The **Classify-Verify** problem: mixed open/closed-world

- Closed set of candidate authors
- Take into account that the author may **not be in the set**

⇒ **Classify-Verify algorithm**: classification + binary verification

- Intercepts misclassifications
- Tunable rigidity – FAR/FRR
- Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
The *Classify-Verify* problem: mixed open/closed-world

- Closed set of candidate authors
- Take into account that the author may not be in the set

⇒ *Classify-Verify algorithm*: classification + binary verification

- Intercepts misclassifications
- Tunable rigidity – FAR/FRR
- Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
The **Classify-Verify problem**: mixed open/closed-world

- **Closed set** of candidate authors
- Take into account that the author may **not be in the set**

⇒ **Classify-Verify algorithm**: classification + binary verification

- Intercepts misclassifications
- **Tunable rigidity** – FAR/FRR
- Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
Motivation – Contd.

- **The Classify-Verify problem**: mixed open/closed-world
 - Closed set of candidate authors
 - Take into account that the author may **not be in the set**

- **⇒ Classify-Verify algorithm**: classification + binary verification
 - Intercepts misclassifications
 - Tunable rigidity – FAR/FRR
 - Performs better than traditional stylometry
 - Closed-world & open-world
 - Different domains and scales
 - Adversarial settings
 - Active authentication settings
Problem Statement

- **Problem building blocks – recap:**
 - \(D \): document of unknown authorship
 - \(A = \{A_1, ..., A_n\} \): set of candidate authors
 - \(p = \Pr[A_D \in A] \): probability \(D \)'s author is a candidate
 - \(\Rightarrow \) The **Classify-Verify** Problem:
 - Find \(D \)'s author in \(A \) or determine \(A_D \notin A \)
 - Optional: given \(p \)
 - **Notations:**
 - *in-set*: documents whose author is a candidate \((= p) \)
 - *not-in-set*: documents whose author is missing \((= 1 - p) \)
Problem Statement

Problem building blocks – recap:
- D: document of unknown authorship
- $\mathcal{A} = \{A_1, \ldots, A_n\}$: set of candidate authors
- $p = Pr[A_D \in \mathcal{A}]$: probability D’s author is a candidate

⇒ The Classify-Verify Problem:
- Find D’s author in \mathcal{A} or determine $A_D \notin \mathcal{A}$
 - Optional: given p

Notations:
- *in-set*: documents whose author is a candidate ($= p$)
- *not-in-set*: documents whose author is missing ($= 1 - p$)
Problem Statement

- Problem building blocks – recap:
 - D: document of unknown authorship
 - $A = \{A_1, ..., A_n\}$: set of candidate authors
 - $p = Pr[D \in A]$: probability D's author is a candidate

- The Classify-Verify Problem:
 - Find D's author in A or determine $A_D \not\in A$
 - Optional: given p

- Notations:
 - *in-set*: documents whose author is a candidate ($= p$)
 - *not-in-set*: documents whose author is missing ($= 1 - p$)
Problem Statement

Problem building blocks – recap:

- D: document of unknown authorship
- $\mathcal{A} = \{A_1, ..., A_n\}$: set of candidate authors
- $p = Pr[A_D \in \mathcal{A}]$: probability D’s author is a candidate

\Rightarrow The Classify-Verify Problem:
- Find D’s author in \mathcal{A} or determine $A_D \not\in \mathcal{A}$
 - Optional: given p

Notations:
- $in-set$: documents whose author is a candidate ($= p$)
- $not-in-set$: documents whose author is missing ($= 1 - p$)
Problem Statement

- Problem building blocks – recap:
 - \(D \): document of unknown authorship
 - \(A = \{A_1, \ldots, A_n\} \): set of candidate authors
 - \(p = Pr[A_D \in A] \): probability \(D \)'s author is a candidate

- \(\Rightarrow \) The \textit{Classify-Verify} Problem:
 - Find \(D \)'s author in \(A \) or determine \(A_D \not\in A \)
 - Optional: given \(p \)

- Notations:
 - \textit{in-set} : documents whose author is a candidate (= \(p \))
 - \textit{not-in-set} : documents whose author is missing (= \(1 - p \))
Problem Statement

- Problem building blocks – recap:
 - D: document of unknown authorship
 - $\mathcal{A} = \{A_1, \ldots, A_n\}$: set of candidate authors
 - $p = Pr[A_D \in \mathcal{A}]$: probability D’s author is a candidate

- ⇒ The Classify-Verify Problem:
 - Find D’s author in \mathcal{A} or determine $A_D \notin \mathcal{A}$
 - Optional: given p

- Notations:
 - *in-set*: documents whose author is a candidate ($= p$)
 - *not-in-set*: documents whose author is missing ($= 1 - p$)
Problem Statement

- Problem building blocks – recap:
 - D: document of unknown authorship
 - $\mathcal{A} = \{A_1, \ldots, A_n\}$: set of candidate authors
 - $p = Pr[A_D \in \mathcal{A}]$: probability D’s author is a candidate

- \implies The Classify-Verify Problem:
 - Find D’s author in \mathcal{A} or determine $A_D \notin \mathcal{A}$
 - Optional: given p

- Notations:
 - $in-set$: documents whose author is a candidate ($= p$)
 - $not-in-set$: documents whose author is missing ($= 1 - p$)
Problems in Closed-World Models

- Closed-world models applied in open-world settings: Classifier always outputs an author
 - Chosen author is merely least-worst choice
 - Absence of true author from pool is unknown
- Extremely relevant for stylometry in online domains
Problems in Closed-World Models

- Closed-world models applied in open-world settings: Classifier *always* outputs an author
 - Chosen author is merely *least-worst* choice
 - Absence of true author from pool is unknown
- Extremely relevant for stylometry in online domains
Problems in Closed-World Models

- Closed-world models applied in open-world settings: Classifier *always* outputs an author
 - Chosen author is merely *least-worst* choice
 - Absence of true author from pool is unknown
- Extremely relevant for stylometry in online domains
Problems in Closed-World Models

- Closed-world models applied in open-world settings: Classifier **always** outputs an author
 - Chosen author is merely **least-worst** choice
 - Absence of true author from pool is unknown
- Extremely relevant for stylometry in online domains
Corpora

- Brennan-Greenstadt Adversarial Corpus (*EBG*) [BAG12]
 - 45 authors, > 6500 words each
 - Adversarial documents: deliberate style change
- ICWSM 2009 Spinn3r Blog dataset [BJS09]
 - 44M blogs, previously used for web-scale stylometry
 - Using 2 subsets, > 7500 words per author
 - *BLOG₅*: 50 authors, used as control to avoid overfitting on *EBG*
 - *BLOG₇*: 911 authors, used for large-scale evaluation
- Active Linguistic Authentication Dataset (*AAUTH*) [JNJS'13]
 - 67 users, continuous keyboard input stream
Corpora

- **Brennan-Greenstadt Adversarial Corpus (EBG)** [BAG12]
 - 45 authors, > 6500 words each
 - Adversarial documents: deliberate style change

- **ICWSM 2009 Spinn3r Blog dataset** [BJS09]
 - 44M blogs, previously used for web-scale stylometry
 - Using 2 subsets, > 7500 words per author
 - \(BLOG_S\): 50 authors, used as control to avoid overfitting on \(EBG\)
 - \(BLOG_L\): 911 authors, used for large-scale evaluation

- **Active Linguistic Authentication Dataset (AAUTH)** [JNJS+13]
 - 67 users, continuous keyboard input stream
Corpora

- Brennan-Greenstadt Adversarial Corpus (EBG) [BAG12]
 - 45 authors, > 6500 words each
 - Adversarial documents: deliberate style change

- ICWSM 2009 Spinn3r Blog dataset [BJS09]
 - 44M blogs, previously used for web-scale stylometry
 - Using 2 subsets, > 7500 words per author
 - \textit{BLOG}_S: 50 authors, used as control to avoid overfitting on \textit{EBG}
 - \textit{BLOG}_L: 911 authors, used for large-scale evaluation

- Active Linguistic Authentication Dataset (AAUTH) [JNJS+13]
 - 67 users, continuous keyboard input stream
Corpora

- Brennan-Greenstadt Adversarial Corpus (*EBG*) [BAG12]
 - 45 authors, > 6500 words each
 - Adversarial documents: deliberate style change

- ICWSM 2009 Spinn3r Blog dataset [BJS09]
 - 44M blogs, previously used for web-scale stylometry
 - Using 2 subsets, > 7500 words per author
 - \(BLOG_S\) : 50 authors, used as control to avoid overfitting on *EBG*
 - \(BLOG_L\) : 911 authors, used for large-scale evaluation

- Active Linguistic Authentication Dataset (*AAUTH*) [JNJS+13]
 - 67 users, continuous keyboard input stream
Corpora

- Brennan-Greenstadt Adversarial Corpus (*EBG*) [BAG12]
 - 45 authors, > 6500 words each
 - Adversarial documents: deliberate style change
- ICWSM 2009 Spinn3r Blog dataset [BJS09]
 - 44M blogs, previously used for web-scale stylometry
 - Using 2 subsets, > 7500 words per author
 - *BLOG_S*: 50 authors, used as control to avoid overfitting on *EBG*
 - *BLOG_L*: 911 authors, used for large-scale evaluation
- Active Linguistic Authentication Dataset (*AAUTH*) [JNJS+13]
 - 67 users, continuous keyboard input stream
Corpora

- Brennan-Greenstadt Adversarial Corpus (*EBG*) [BAG12]
 - 45 authors, > 6500 words each
 - Adversarial documents: deliberate style change
- ICWSM 2009 Spinn3r Blog dataset [BJS09]
 - 44M blogs, previously used for web-scale stylometry
 - Using 2 subsets, > 7500 words per author
 - *BLOGS*: 50 authors, used as control to avoid overfitting on *EBG*
 - *BLOGL*: 911 authors, used for large-scale evaluation
- Active Linguistic Authentication Dataset (*AAUTH*) [JNJS+13]
 - 67 users, continuous keyboard input stream
Corpora

- Brennan-Greenstadt Adversarial Corpus (EBG) [BAG12]
 - 45 authors, > 6500 words each
 - Adversarial documents: deliberate style change

- ICWSM 2009 Spinn3r Blog dataset [BJS09]
 - 44M blogs, previously used for web-scale stylometry
 - Using 2 subsets, > 7500 words per author
 - $BLOG_S$: 50 authors, used as control to avoid overfitting on EBG
 - $BLOG_L$: 911 authors, used for large-scale evaluation

- Active Linguistic Authentication Dataset (AAUTH) [JNJS+13]
 - 67 users, continuous keyboard input stream
Feature Set

- Tested several feature sets
 - *Writeprints* – extensive feature set
 - Lexical, syntactic, content, grammar, idiosyncrasies...
 - $k \in \{50, \ldots, 1000\}$ most common $n \in \{1, \ldots, 5\}$-grams
 - $\langle k, n \rangle$-chars, $\langle k, n \rangle$-words
 - $\langle 500, 2 \rangle$-chars wins
 - Best F1-score on EBG & BLOGS
Tested several feature sets

- *Writeprints* – extensive feature set
 - Lexical, syntactic, content, grammar, idiosyncrasies...
- $k \in \{50, \ldots, 1000\}$ most common $n \in \{1, \ldots, 5\}$-grams
 - $\langle k, n \rangle$-chars, $\langle k, n \rangle$-words
- $\langle 500, 2 \rangle$-chars wins

Best F1-score on *EBG & BLOG*$_S$
Feature Set

- Tested several feature sets
 - Writeprints – extensive feature set
 - Lexical, syntactic, content, grammar, idiosyncrasies...
 - $k \in \{50, \ldots, 1000\}$ most common $n \in \{1, \ldots, 5\}$-grams
 - $\langle k, n \rangle$-chars, $\langle k, n \rangle$-words
 - $\langle 500, 2 \rangle$-chars wins
 - Best F1-score on EBG & BLOG$_S$
Classify-Verify

- **Abstaining classifier**: refrain when not sure
- Closed-world classifier + verifier \rightarrow open-world
- Output range: $\mathcal{A} \rightarrow \mathcal{A} \cup \{\perp\}$
 - \perp = "unknown"
- Manual/automatically set verification threshold t
- Aim to maximize F1-scores for some expected in-set $% = p$
 - p in-set documents
 - $1 - p$ not-in-set documents
Classify-Verify

- **Abstaining classifier**: refrain when not sure
- **Closed-world classifier + verifier** → open-world
- **Output range**: \(A \rightarrow A \cup \{\perp\} \)
 - \(\perp = \text{"unknown"} \)
- **Manual/automatically set verification threshold** \(t \)
- **Aim to maximize F1-scores for some expected in-set \(p \) % = \(p \)**
 - \(p \) in-set documents
 - \(1 - p \) not-in-set documents
Classify-Verify

- **Abstaining classifier**: refrain when not sure
- Closed-world classifier + verifier \rightarrow open-world
- Output range: $A \rightarrow A \cup \{\perp\}$
 - $\perp = “unknown”$
- Manual/automatically set verification threshold t
- Aim to maximize F1-scores for some expected in-set $% = p$
 - p in-set documents
 - $1 - p$ not-in-set documents
Classify-Verify

- **Abstaining classifier**: refrain when not sure
- Closed-world classifier + verifier \rightarrow open-world
- Output range: $A \rightarrow A \cup \{\perp\}$
 - \perp = “unknown”
- Manual/automatically set verification threshold t
- Aim to maximize F1-scores for some expected in-set $\% = p$
 - p in-set documents
 - $1 - p$ not-in-set documents
Classify-Verify

- **Abstaining classifier**: refrain when not sure
- Closed-world classifier + verifier → open-world
- Output range: \(A \rightarrow A \cup \{\perp\} \)
 - \(\perp = \text{“unknown”} \)
- Manual/automatically set verification threshold \(t \)
- Aim to maximize F1-scores for some expected *in-set* \(\% = p \)
 - \(p \) *in-set* documents
 - \(1 - p \) *not-in-set* documents
Classify: Closed-World Setup

- **Authorship Attribution**: which $A \in A$ wrote D?
- SMO SVM as underlying classifier for the “Classify” phase
- Also used to establish “classify-only” baseline
 - How closed-world classifiers perform in open-world? (not good...)
Classify: Closed-World Setup

- **Authorship Attribution**: which $A \in \mathcal{A}$ wrote D?
- **SMO SVM** as underlying classifier for the “Classify” phase
- Also used to establish “classify-only” baseline
 - How closed-world classifiers perform in open-world? (not good...)
Classify: Closed-World Setup

- **Authorship Attribution**: which $A \in \mathcal{A}$ wrote D?
- **SMO SVM** as underlying classifier for the “Classify” phase
- Also used to establish “classify-only” baseline
 - How closed-world classifiers perform in open-world? (not good...)
Verify: Open-World Setup

- **Authorship Verification**: is \(D \) written by \(A \)?
 - Naïve #1: reduce to 1-vs-all modeling not-\(A \)
 - Naïve #2: cross validate \(A \) vs \(D \) & test distinguishability

- **Verification methods**:
 - Classifier-induced: based on closed-world classifier outputs \(P_1, P_1-P_2\text{-}Diff, \text{Gap-Conf} \)
 - Standalone: models built using \(A \)'s training data only \(V, V_\sigma, V_{a\sigma} \)

- Also used to establish “verify-only” baseline
Verify: Open-World Setup

- **Authorship Verification**: is D written by A?
 - Naïve #1: reduce to 1-vs-all modeling *not*-A
 - Naïve #2: cross validate A vs D & test distinguishability

- Verification methods:
 - Classifier-induced: based on closed-world classifier outputs P_1, P_1-P_2-Diff, Gap-Conf
 - Standalone: models built using A’s training data only V, V_σ, V^a_σ

- Also used to establish “verify-only” baseline
Verify: Open-World Setup

- **Authorship Verification**: is D written by A?
 - Naïve #1: reduce to 1-vs-all modeling not-A
 - Naïve #2: cross validate A vs D & test distinguishability

- Verification methods:
 - **Classifier-induced**: based on closed-world classifier outputs P_1, P_1-P_2-Diff, Gap-Conf
 - **Standalone**: models built using A’s training data only V, V_σ, V_a

- Also used to establish “verify-only” baseline
Verify: Open-World Setup

- **Authorship Verification**: is D written by A?
 - Naïve #1: reduce to 1-vs-all modeling *not*-A
 - Naïve #2: cross validate A vs D & test distinguishability

- **Verification methods:**
 - Classifier-induced: based on closed-world classifier outputs P_1, P_1-P_2-Diff, Gap-Conf
 - Standalone: models built using A's training data only V, V_σ, V^a_σ
 - Also used to establish “verify-only” baseline
Verify: Open-World Setup

- Authorship Verification: is D written by A?
 - Naïve #1: reduce to 1-vs-all modeling *not-A
 - Naïve #2: cross validate A vs D & test distinguishability

- Verification methods:
 - Classifier-induced: based on closed-world classifier outputs P_1, P_1-P_2-Diff, Gap-Conf
 - Standalone: models built using A's training data only V, V_σ, V_a
 - Also used to establish “verify-only” baseline
Authorship Verification: is \(D \) written by \(A \)?

- Naïve #1: reduce to 1-vs-all modeling not-\(A \)
- Naïve #2: cross validate \(A \) vs \(D \) & test distinguishability

Verification methods:

- Classifier-induced: based on closed-world classifier outputs \(P_1, P_1-P_2\)-Diff, Gap-Conf
- Standalone: models built using \(A \)'s training data only \(V, V_\sigma, V^a_\sigma \)

Also used to establish “verify-only” baseline
Verify: Open-World Setup

- **Authorship Verification**: is D written by A?
 - Naïve #1: reduce to 1-vs-all modeling *not-* A
 - Naïve #2: cross validate A vs D & test distinguishability

- **Verification methods**:
 - **Classifier-induced**: based on closed-world classifier outputs P_1, P_1-P_2-Diff, Gap-Conf
 - **Standalone**: models built using A's training data *only* V, V_σ, V^a_σ

- Also used to establish “verify-only” baseline
Classify-Verify – Flow

\[\mathcal{A} \text{ Train} \]

Document \(D \)

\[C_{\mathcal{A}} \]

\[V_{A_1} \quad V_{A_2} \quad \ldots \quad V_{A_i} \quad \ldots \quad V_{A_n} \]
Classify-Verify – Flow

\[A \text{ Train} \]

Document \(D \)

Set \(t \)

\(C_A \)

\(V_{A_1} \) \(V_{A_2} \) \(\ldots \) \(V_{A_i} \) \(\ldots \) \(V_{A_n} \)
Classify-Verify – Flow

\[\mathcal{A} \text{ Train} \]

Document \(D \)

\[\text{Set} \]

\[t? \]

\[\text{p?} \]

\[V_{A_1} \quad V_{A_2} \quad \ldots \quad V_{A_i} \quad \ldots \quad V_{A_n} \]

\[C_{\mathcal{A}} \]
Classify-Verify – Flow

![Diagram showing the flow of Classify-Verify](image)
Classify-Verify – Flow

- Train
- Document
- Set
- \(C_A \)
- \(V_{A_1} \), \(V_{A_2} \), ..., \(V_{A_i} \), ..., \(V_{A_n} \)

Motivation

Background

Corpora

Methodology

Evaluation

Conclusion
Classify-Verify – Flow

\[A \text{ Train} \]

\[\text{Document } D \]

Set \(t \)

\(t? \)

\(p? \)

\[V_{A_1} \quad V_{A_2} \quad \ldots \quad V_{A_i} \quad \ldots \quad V_{A_n} \]

Accept

Reject

\[A_i \]

Ariel Stolerman

Authorship Verification
Classify-Verify – Threshold Selection

- **Oracle**: manually-set for best performance on test data
- **p-Induced**: t set empirically over training set
 - to maximize F1-scores for p
- **Robust**: t set empirically over training set
 - to maximize expected F1-scores over all $p \in 0.1, 0.2, ..., 1.0$
Classify-Verify – Threshold Selection

- **Oracle**: manually-set for best performance on test data
- **p-Induced**: t set empirically over training set
 - to maximize F1-scores for p
- **Robust**: t set empirically over training set
 - to maximize expected F1-scores over all $p \in 0.1, 0.2, \ldots, 1.0$
Classify-Verify – Threshold Selection

- **Oracle**: manually-set for best performance on test data
- **p-Induced**: t set empirically over training set
 - to maximize F1-scores for p
- **Robust**: t set empirically over training set
 - to maximize expected F1-scores over all $p \in 0.1, 0.2, ..., 1.0$
Evaluation Methodology

- **n-fold cross-validation**
 - EBG adversarial: classify attack docs ($\perp = \text{attack}$)

- **Baselines**
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- **Varying p: proportion/probability of *in-set* documents**
 - 10%, 20%, ... → 100% (pure closed-world)
 - 10 experiments, in each only $p \times n$ authors are trained on

- **Flexible vs. Strict Evaluation:**
 - *Flexible*: count all thwarted misclassifications as *true*
 - *Strict*: count only *not-in-set* thwarted misclassification as *true*

- Measure F1-score: precision ↔ recall
Evaluation Methodology

- *n*-fold cross-validation
 - *EBG* adversarial: classify attack docs (\(⊥ = \text{attack}\))

- Baselines
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- Varying *p*: proportion/probability of *in-set* documents
 - 10%, 20%, ... \(\rightarrow\) 100% (pure closed-world)
 - 10 experiments, in each only \(p \times n\) authors are trained on

- *Flexible* vs. *Strict* Evaluation:
 - *Flexible*: count all thwarted misclassifications as *true*
 - *Strict*: count only *not-in-set* thwarted misclassification as *true*

- Measure F1-score: precision \(\leftrightarrow\) recall
Evaluation Methodology

- **n-fold cross-validation**
 - \(EBG\) adversarial: classify attack docs (\(-=\text{attack}\))

- **Baselines**
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- **Varying \(p\):** proportion/probability of \(in-set\) documents
 - 10%, 20%, ... \(\rightarrow\) 100% (pure closed-world)
 - 10 experiments, in each only \(p \times n\) authors are trained on

- **Flexible vs. Strict Evaluation:**
 - **Flexible**: count all thwarted misclassifications as \(true\)
 - **Strict**: count only not-in-set thwarted misclassification as \(true\)

- Measure F1-score: precision \(\leftrightarrow\) recall
Evaluation Methodology

- *n-fold cross-validation*
 - *EBG adversarial*: classify attack docs ($\perp = \text{attack}$)

- **Baselines**
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- **Varying p: proportion/probability of *in-set* documents**
 - 10%, 20%, ... \rightarrow 100% (pure closed-world)
 - 10 experiments, in each only $p \times n$ authors are trained on

- **Flexible vs. Strict Evaluation:**
 - *Flexible*: count *all* thwarted misclassifications as *true*
 - *Strict*: count only *not-in-set* thwarted misclassification as *true*

- Measure F1-score: precision \leftrightarrow recall
Evaluation Methodology

- n-fold cross-validation
 - EBG adversarial: classify attack docs (\(\bot = \text{attack} \))
- Baselines
 - Only closed-world classifiers
 - Only binary (standalone) verifiers
- Varying \(p \): proportion/probability of in-set documents
 - 10%, 20%, ... \(\rightarrow \) 100% (pure closed-world)
 - 10 experiments, in each only \(p \times n \) authors are trained on
- Flexible vs. Strict Evaluation:
 - Flexible: count all thwarted misclassifications as true
 - Strict: count only not-in-set thwarted misclassification as true
- Measure F1-score: precision \(\leftrightarrow \) recall
Evaluation Methodology

- *n-fold cross-validation*
 - *EBG adversarial: classify attack docs (⊥ = attack)*

- **Baselines**
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- **Varying p: proportion/probability of *in-set* documents**
 - 10%, 20%, ... → 100% (pure closed-world)
 - 10 experiments, in each only $p \times n$ authors are trained on

- **Flexible vs. Strict Evaluation:**
 - *Flexible*: count all thwarted misclassifications as *true*
 - *Strict*: count only *not-in-set* thwarted misclassification as *true*

- Measure F1-score: precision ↔ recall
Evaluation Methodology

- *n-fold cross-validation*
 - *EBG adversarial: classify attack docs (⊥ = attack)*

- **Baselines**
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- **Varying p: proportion/probability of *in-set* documents**
 - 10%, 20%, ... → 100% (pure closed-world)
 - 10 experiments, in each only $p \times n$ authors are trained on

- **Flexible vs. Strict Evaluation:**
 - *Flexible*: count all thwarted misclassifications as *true*
 - *Strict*: count only *not-in-set* thwarted misclassification as *true*

- Measure F1-score: precision ↔ recall
Evaluation Methodology

- **n-fold cross-validation**
 - EBG adversarial: classify attack docs ($\perp = \text{attack}$)

- **Baselines**
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- **Varying p: proportion/probability of in-set documents**
 - 10%, 20%, ... → 100% (pure closed-world)
 - 10 experiments, in each only $p \times n$ authors are trained on

- **Flexible vs. Strict Evaluation:**
 - **Flexible**: count all thwarted misclassifications as true
 - **Strict**: count only not-in-set thwarted misclassification as true

- Measure F1-score: precision \leftrightarrow recall
Evaluation Methodology

- *n*-fold cross-validation
 - *EBG* adversarial: classify attack docs (⊥ = attack)

- Baselines
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- Varying *p*: proportion/probability of *in-set* documents
 - 10%, 20%, ... → 100% (pure closed-world)
 - 10 experiments, in each only *p* × *n* authors are trained on

- **Flexible vs. Strict Evaluation**:
 - **Flexible**: count all thwarted misclassifications as true
 - **Strict**: count only not-in-set thwarted misclassification as true

- Measure F1-score: precision ↔ recall
Evaluation Methodology

- \(n \)-fold cross-validation
 - \(EBG \) adversarial: classify attack docs (\(\bot = \text{attack} \))

- Baselines
 - Only closed-world classifiers
 - Only binary (standalone) verifiers

- Varying \(p \): proportion/probability of \textit{in-set} documents
 - 10\%, 20\%, ... \(\rightarrow \) 100\% (pure closed-world)
 - 10 experiments, in each only \(p \times n \) authors are trained on

- \textit{Flexible vs. Strict} Evaluation:
 - \textit{Flexible}: count \textit{all} thwarted misclassifications as \textit{true}
 - \textit{Strict}: count only \textit{not-in-set} thwarted misclassification as \textit{true}

- Measure F1-score: precision \(\leftrightarrow \) recall
Results
Results: $EBG/BLOGs$

Classify-Verify outperforms closed-world classifiers alone

- Using oracle thresholds
Results: $EBG/BLOGs$ – p-Induced Thresholds

Classify-Verify outperforms closed-world classifiers alone

- Using p-induced thresholds as well – similar to oracle
Results: $EBG/BLOG_S$—Robust Thresholds

Classify-Verify outperforms closed-world classifiers alone

- Using *Robust* thresholds for most *in-set* scenarios, without knowing p!
Results: *EBG Adversarial Settings*

Classify-Verify successfully thwarts most attacks

- Even if thresholds not set to hold-off attacks

![Graphs showing results of *Classify-Verify* with SVM + Vo and SVM + P1 for EBG Obfuscation and Imitation with CV/Flexible and CV/Strict settings.](image-url)
Classify-Verify outperforms closed-world models on large-scale datasets.
Results: **AAUTH**

Classify-Verify outperforms closed-world models in active authentication settings

- For 5, 10, 20, 30-minute windows with 1-minute decision frequency

![Graphs showing performance comparison between SVM + V, SVM + P, CV/Flexible, and CV/Strict for different time intervals (5m, 10m, 20m, 30m). The graphs illustrate the decision performance over time, with lines representing different methods and shaded areas indicating confidence intervals.]
Classify-Verify – Conclusion

- *Classify-Verify* is effective in open-world settings
 - Also more effective in closed-world settings
 - Automatic threshold selection performs well w/ or w/o knowing p
- Effective in thwarting attacks
 - Even without special “defensive” configuration
- Effective in large-scale, open-world domain datasets
- Effective in dynamic, noisy active authentication settings
- ⇒ *Classify-Verify* is preferable over closed-world classifiers almost always
 - Essential tool for analysis of open-world and closed-world problems
Classify-Verify – Conclusion

- *Classify-Verify* is effective in open-world settings
 - Also more effective in closed-world settings
 - Automatic threshold selection performs well w/ or w/o knowing \(p \)
 - Effective in thwarting attacks
 - Even without special “defensive” configuration
- Effective in large-scale, open-world domain datasets
- Effective in dynamic, noisy active authentication settings
- ⇒ *Classify-Verify* is preferable over closed-world classifiers almost always
 - Essential tool for analysis of open-world and closed-world problems
Classify-Verify – Conclusion

- **Classify-Verify** is effective in open-world settings
 - Also more effective in closed-world settings
 - Automatic threshold selection performs well w/ or w/o knowing p
- Effective in thwarting attacks
 - Even without special “defensive” configuration
- Effective in large-scale, open-world domain datasets
- Effective in dynamic, noisy active authentication settings
- \Rightarrow **Classify-Verify** is preferable over closed-world classifiers almost always
 - Essential tool for analysis of open-world and closed-world problems
Classify-Verify – Conclusion

- **Classify-Verify** is effective in open-world settings
 - Also more effective in closed-world settings
 - Automatic threshold selection performs well w/ or w/o knowing p
- Effective in thwarting attacks
 - Even without special “defensive” configuration
- Effective in large-scale, open-world domain datasets
- Effective in dynamic, noisy active authentication settings
- **⇒ Classify-Verify** is preferable over closed-world classifiers almost always
 - Essential tool for analysis of open-world and closed-world problems
Classify-Verify – Conclusion

▶ *Classify-Verify* is effective in open-world settings
 ▶ Also more effective in closed-world settings
 ▶ Automatic threshold selection performs well w/ or w/o knowing p
▶ Effective in thwarting attacks
 ▶ Even without special “defensive” configuration
▶ Effective in large-scale, open-world domain datasets
 ▶ Effective in dynamic, noisy active authentication settings
 ▶ ⇒ *Classify-Verify* is preferable over closed-world classifiers almost always
 ▶ Essential tool for analysis of open-world and closed-world problems
Classify-Verify – Conclusion

- *Classify-Verify* is effective in open-world settings
 - Also more effective in closed-world settings
 - Automatic threshold selection performs well *w/ or w/o knowing* p
- Effective in thwarting attacks
 - Even without special “defensive” configuration
- Effective in large-scale, open-world domain datasets
- Effective in dynamic, noisy active authentication settings
- ⇒ *Classify-Verify* is preferable over closed-world classifiers almost always
 - Essential tool for analysis of open-world and closed-world problems
Classify-Verify – Conclusion

- *Classify-Verify* is effective in open-world settings
 - Also more effective in closed-world settings
 - Automatic threshold selection performs well w/ or w/o knowing \(p \)
- Effective in thwarting attacks
 - Even without special “defensive” configuration
- Effective in large-scale, open-world domain datasets
- Effective in dynamic, noisy active authentication settings
 - ⇒ *Classify-Verify* is preferable over closed-world classifiers almost always
 - Essential tool for analysis of open-world and closed-world problems
Increase in online discourse, pools of authors, countermeasures against stylometry

Necessitates robust, open-world stylometric methods

Authorship verification – useful approach for security & open-world applications

Problem relaxation → improve classification (LFID)

High-level security applications (Active Authentication)

Open-world problems (the Classify-Verify algorithm)

Verification-infused classification – shown effective in improving closed-world classifiers alone
Summary

- Increase in online discourse, pools of authors, countermeasures against stylometry
 - Necessitates robust, open-world stylometric methods
- **Authorship verification** – useful approach for security & open-world applications
 - Problem relaxation → improve classification (LFID)
 - High-level security applications (Active Authentication)
 - Open-world problems (the *Classify-Verify* algorithm)
- Verification-infused classification – shown effective in improving closed-world classifiers alone
Summary

- Increase in online discourse, pools of authors, countermeasures against stylometry
 - Necessitates robust, open-world stylometric methods
- **Authorship verification** – useful approach for security & open-world applications
 - Problem relaxation \(\rightarrow\) improve classification (LFID)
 - High-level security applications (Active Authentication)
 - Open-world problems (the *Classify-Verify* algorithm)
- Verification-infused classification – shown effective in improving closed-world classifiers alone
Summary

- Increase in online discourse, pools of authors, countermeasures against stylometry
 - Necessitates robust, open-world stylometric methods
- **Authorship verification** – useful approach for security & open-world applications
 - Problem relaxation → improve classification (LFID)
 - High-level security applications (Active Authentication)
 - Open-world problems (the *Classify-Verify* algorithm)
- Verification-infused classification – shown effective in improving closed-world classifiers alone
Summary

- Increase in online discourse, pools of authors, countermeasures against stylometry
 - Necessitates robust, open-world stylometric methods
- **Authorship verification** – useful approach for security & open-world applications
 - Problem relaxation → improve classification (LFID)
 - High-level security applications (Active Authentication)
 - Open-world problems (the *Classify-Verify* algorithm)
- Verification-infused classification – shown effective in improving closed-world classifiers alone
Summary

- Increase in online discourse, pools of authors, countermeasures against stylometry
 - Necessitates robust, open-world stylometric methods
- **Authorship verification** – useful approach for security & open-world applications
 - Problem relaxation → improve classification (LFID)
 - High-level security applications (Active Authentication)
 - Open-world problems (*the Classify-Verify algorithm*)
- **Verification-infused classification** – shown effective in improving closed-world classifiers alone
Directions for Future Authorship Verification Research

- Expand and elevate authorship verification research as a preferred approach for stylometry
 - Integrating binary verification with closed-world classification
 - Expanding empirical foundations of verification evaluation
 - Fusion of verification methods
 - Verification used for security and privacy
Directions for Future Authorship Verification Research

- Expand and elevate authorship verification research as a preferred approach for stylometry
 - Integrating binary verification with closed-world classification
 - Expanding empirical foundations of verification evaluation
 - Fusion of verification methods
 - Verification used for security and privacy
Directions for Future Authorship Verification Research

- Expand and elevate authorship verification research as a preferred approach for stylometry
 - Integrating binary verification with closed-world classification
 - Expanding empirical foundations of verification evaluation
 - Fusion of verification methods
 - Verification used for security and privacy
Directions for Future Authorship Verification Research

- Expand and elevate authorship verification research as a preferred approach for stylometry
 - Integrating binary verification with closed-world classification
 - Expanding empirical foundations of verification evaluation
 - Fusion of verification methods
 - Verification used for security and privacy
Directions for Future Authorship Verification Research

- Expand and elevate authorship verification research as a preferred approach for stylometry
 - Integrating binary verification with closed-world classification
 - Expanding empirical foundations of verification evaluation
 - Fusion of verification methods
 - Verification used for security and privacy
Thank You!

Contact: stolerman@cs.drexel.edu
The Privacy Security & Automation Lab @ Drexel: http://psal.cs.drexel.edu/

Committee
- Dr. Santiago Ontañón Villar
- Dr. Dario Salvucci
- Dr. Ali Shokoufandeh

Dr. Patrick Juola

Dr. Rachel Greenstadt (Advisor)

PSAL Colleagues
- Dr. Michael Brennan
- Pavan Kantharaju
- Jeffrey Segall
- Travis Dutko
- and all others

Co-Authors
- John I. Noecker Jr.
- Michael V. Ryan
- Patrick Brennan
- Dr. Alex Fridman
- Sayandeep Acharya
- Dr. Moshe Kam
- Dr. Damon McCoy

Authorship Verification
For Further Reading I

For Further Reading II

Patrick Juola, John Noecker Jr., Ariel Stolerman, Michael V. Ryan, Patrick Brennan, and Rachel Greenstadt.
A dataset for active linguistic authentication.

Patrick Juola, John I. Noecker, Ariel Stolerman, Michael V. Ryan, Patrick Brennan, and Rachel Greenstadt.
Keyboard-behavior-based authentication.

P. Juola.
Jgaap, a java-based, modular, program for textual analysis, text categorization, and authorship attribution.

Andrew McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and Rachel Greenstadt.
Use fewer instances of the letter "i": Toward writing style anonymization.
In Privacy Enhancing Technologies Symposium (PETS), 2012.

John Noecker Jr. and Michael Ryan.
Distractorless authorship verification.

Ariel Stolerman, Aylin Caliskan, and Rachel Greenstadt.
From language to family and back: Native language and language family identification from english text.
For Further Reading III

Ariel Stolerman, Alex Fridman, Rachel Greenstadt, Patrick Brennan, and Patrick Juola.
Active linguistic authentication revisited: Real-time stylometric evaluation towards multi-modal decision fusion.
In The Tenth Annual IFIP WG 11.9 International Conference on Digital Forensics, January 2014.

Ariel Stolerman and Rachel Greenstadt.
Mixed closed-world and open-world authorship attribution.
IEEE Transactions on Information Forensics and Security [under submission].

Ariel Stolerman, Rebekah Overdorf, Sadia Afroz, and Rachel Greenstadt.
Classify, but verify: Breaking the closed-world assumption in stylometric authorship attribution.
In The Tenth Annual IFIP WG 11.9 International Conference on Digital Forensics, January 2014.
JStylo: Authorship Attribution Framework

Introduction
Background
Native Language Identification
Active Authentication
Classify-Verify
Summary

Training Documents

A_1
A_2
...
A_N

Test Documents

Feature Extraction

Document pre-process

Feature Extraction

12 289 5.61 ... 13.7

Classification

C_1
Train
Test

CL
Train
Test

Results

A_3 A_15 A_7

Training Set
CV Results
Confidence in given solution by distance-based classifiers

- Classify \rightarrow set threshold \rightarrow test
- Consider $P_1 \geq P_2 \geq ... \geq P_n$ for $A_i \in A$:
 - P_1: classifier’s probability for chosen author
 - P_1-P_2-$Diff$: diff b/w probabilities of top and 2nd-to-top authors
 - Gap-Conf: like P_1-P_2-$Diff$, using n 1-vs-all classifiers
Classifier-Induced Verification

- Confidence in given solution by distance-based classifiers
- Classify \rightarrow set threshold \rightarrow test
- Consider $P_1 \geq P_2 \geq ... \geq P_n$ for $A_i \in A$:
 - P_1: classifier’s probability for chosen author
 - P_1-P_2-$Diff$: diff b/w probabilities of top and 2nd-to-top authors
 - Gap-$Conf$: like P_1-P_2-$Diff$, using n 1-vs-all classifiers
Classifier-Induced Verification

- Confidence in given solution by distance-based classifiers
- Classify \rightarrow set threshold \rightarrow test
- Consider $P_1 \geq P_2 \geq \ldots \geq P_n$ for $A_i \in \mathcal{A}$:
 - P_1: classifier’s probability for chosen author
 - $P_1 - P_2$: difference between probabilities of top and 2nd-to-top authors
 - Gap-Conf: like $P_1 - P_2$, using n 1-vs-all classifiers
Classifier-Induced Verification

- Confidence in given solution by distance-based classifiers
- Classify → set threshold → test
- Consider $P_1 \geq P_2 \geq \ldots \geq P_n$ for $A_i \in \mathcal{A}$:
 - P_1: classifier’s probability for chosen author
 - $P_1 - P_2$-$Diff$: diff b/w probabilities of top and 2nd-to-top authors
 - Gap-$Conf$: like $P_1 - P_2$-$Diff$, using n 1-vs-all classifiers
Classifier-Induced Verification

- Confidence in given solution by distance-based classifiers
- Classify \rightarrow set threshold \rightarrow test
- Consider $P_1 \geq P_2 \geq \ldots \geq P_n$ for $A_i \in \mathcal{A}$:
 - P_1: classifier’s probability for chosen author
 - $P_1 - P_2$-$Diff$: diff b/w probabilities of top and 2nd-to-top authors
 - Gap-$Conf$: like $P_1 - P_2$-$Diff$, using n 1-vs-all classifiers
Confidence in given solution by distance-based classifiers

Classify → set threshold → test

Consider $P_1 \geq P_2 \geq \ldots \geq P_n$ for $A_i \in A$:

- P_1: classifier’s probability for chosen author
- $P_1 - P_2 - \text{Diff}$: diff b/w probabilities of top and 2^{nd}-to-top authors
- Gap-Conf: like $P_1 - P_2 - \text{Diff}$, using n 1-vs-all classifiers
V: Distractorless Verification [NJR12]

- Standardize char-case & whitespaces, extract word/char n-grams
- Author model: \(M = \langle m_1, m_2, ..., m_n \rangle \)
- Document model: \(F = \langle f_1, f_2, ..., f_n \rangle \)
- Test: \(\delta(M, F) < t \)?

Variants:

- Tighten bound for less varied authors, widen for “looser” ones
- \(V_\sigma \): per-feature SD normalization
- \(V^a \): account for \(A \)’s avg. pairwise document distances
- Evaluation w/ 10-fold CV + \(\langle 500, 2 \rangle \)-chars
Standalone Verification

- **V: Distractorless Verification** [NJR12]
 - Standardize char-case & whitespaces, extract word/char n-grams
 - Author model $M = \langle m_1, m_2, \ldots, m_n \rangle$
 - Document model $F = \langle f_1, f_2, \ldots, f_n \rangle$
 - Test: $\delta(M, F) < t$?

- **Variants:**
 - Tighten bound for less varied authors, widen for “looser” ones
 - V_σ: per-feature SD normalization
 - V^a: account for A’s avg. pairwise document distances
 - Evaluation w/ 10-fold CV + $\langle 500, 2 \rangle$-chars
Standalone Verification

▶ **V: Distractorless Verification** [NJR12]
 ▶ Standardize char-case & whitespaces, extract word/char n-grams
 ▶ Author model $M = \langle m_1, m_2, ..., m_n \rangle$
 ▶ Document model $F = \langle f_1, f_2, ..., f_n \rangle$
 ▶ Test: $\delta(M, F) < t$?

▶ Variants:
 ▶ Tighten bound for less varied authors, widen for “looser” ones
 ▶ V_σ: per-feature SD normalization
 ▶ V^a: account for A’s avg. pairwise document distances
 ▶ Evaluation w/ 10-fold CV + ⟨500, 2⟩-chars
Standalone Verification

- **V: Distractorless Verification** [NJR12]
 - Standardize char-case & whitespaces, extract word/char n-grams
 - Author model $M = \langle m_1, m_2, \ldots, m_n \rangle$
 - Document model $F = \langle f_1, f_2, \ldots, f_n \rangle$
 - Test: $\delta(M, F) < t$?

- **Variants:**
 - Tighten bound for less varied authors, widen for “looser” ones
 - V_σ: per-feature SD normalization
 - V^a: account for A’s avg. pairwise document distances
 - Evaluation w/ 10-fold CV + $\langle 500, 2 \rangle$-chars
V: Distractorless Verification [NJR12]

- Standardize char-case & whitespaces, extract word/char \(n \)-grams
- Author model \(M = \langle m_1, m_2, ..., m_n \rangle \)
- Document model \(F = \langle f_1, f_2, ..., f_n \rangle \)
- Test: \(\delta(M, F) < t \)?

Variants:
- Tighten bound for less varied authors, widen for “looser” ones
- \(V_\sigma \): per-feature SD normalization
- \(V^a \): account for A’s avg. pairwise document distances
- Evaluation w/ 10-fold CV + \(\langle 500, 2 \rangle \)-chars
Standalone Verification

- **V: Distractorless Verification** \[^{[NJR12]}\]
 - Standardize char-case & whitespaces, extract word/char \(n\)-grams
 - Author model \(M = \langle m_1, m_2, \ldots, m_n \rangle\)
 - Document model \(F = \langle f_1, f_2, \ldots, f_n \rangle\)
 - Test: \(\delta(M, F) < t\)?

- **Variants:**
 - Tighten bound for less varied authors, widen for “looser” ones
 - \(V_\sigma\): per-feature SD normalization
 - \(V^a\): account for \(A\)’s avg. pairwise document distances
 - Evaluation w/ 10-fold CV + \(\langle 500, 2 \rangle\)-chars
Standalone Verification

▶ **V: Distractorless Verification** \[\text{[NJR12]}\]
 > Standardize char-case & whitespaces, extract word/char n-grams
 > Author model $M = \langle m_1, m_2, \ldots, m_n \rangle$
 > Document model $F = \langle f_1, f_2, \ldots, f_n \rangle$
 > Test: $\delta(M, F) < t$?

▶ **Variants:**
 > Tighten bound for less varied authors, widen for “looser” ones
 > V_σ: per-feature SD normalization
 > V^a: account for A’s avg. pairwise document distances
 > Evaluation w/ 10-fold CV + $\langle 500, 2 \rangle$-chars
Standalone Verification

- **V: Distractorless Verification** [NJR12]
 - Standardize char-case & whitespaces, extract word/char n-grams
 - Author model $M = \langle m_1, m_2, \ldots, m_n \rangle$
 - Document model $F = \langle f_1, f_2, \ldots, f_n \rangle$
 - Test: $\delta(M, F) < t$?

- **Variants:**
 - Tighten bound for less varied authors, widen for “looser” ones
 - V_σ: per-feature SD normalization
 - V^a: account for A’s avg. pairwise document distances
 - Evaluation w/ 10-fold CV + $\langle 500, 2 \rangle$-chars
Standalone Verification

- **V: Distractorless Verification** [NJR12]
 - Standardize char-case & whitespaces, extract word/char n-grams
 - Author model $M = \langle m_1, m_2, ..., m_n \rangle$
 - Document model $F = \langle f_1, f_2, ..., f_n \rangle$
 - Test: $\delta(M, F) < t$?

- **Variants:**
 - Tighten bound for less varied authors, widen for “looser” ones
 - V_σ: per-feature SD normalization
 - V^a: account for A’s avg. pairwise document distances
 - Evaluation w/ 10-fold CV + ⟨500, 2⟩-chars
Standalone Verification

- **V: Distractorless Verification** [NJR12]
 - Standardize char-case & whitespaces, extract word/char n-grams
 - Author model $M = \langle m_1, m_2, \ldots, m_n \rangle$
 - Document model $F = \langle f_1, f_2, \ldots, f_n \rangle$
 - Test: $\delta(M, F) < t$?

- **Variants:**
 - Tighten bound for less varied authors, widen for “looser” ones
 - V_{σ}: per-feature SD normalization
 - V^a: account for A’s avg. pairwise document distances
 - Evaluation w/ 10-fold CV + $\langle 500, 2 \rangle$-chars
Standalone Verification – Contd.

- ROC curves: no method is strictly preferred over the other
 - EBG (left): V_σ wins, Blog (right): V wins

![ROC curves for EBG and BLOGS](image-url)
Results: \textit{EBG/BLOGs}

\textit{Classify-Verify} outperforms closed-world classifier \textit{and} open-world verifiers alone

- Using oracle thresholds
Results: \textit{EBG/BLOG}_S – \(p\)-Induced Thresholds

\textit{Classify-Verify} outperforms closed-world classifier \textit{and} open-world verifiers alone

- Using \(p\)-induced thresholds as well – similar to oracle
Results: \(EBG/BLOGS \)– Robust Thresholds

Classify-Verify outperforms closed-world classifier and open-world verifiers alone

- Using *Robust* thresholds for most *in-set* scenarios, without knowing \(p \)!

Ariel Stolerman
Results: **AAUTH**

Classify-Verify outperforms closed-world models in active authentication settings

- For 5, 10, 20, 30-minute windows with 1-minute decision frequency