1. Let $f,g : \mathbb{N} \to \mathbb{N}$ be two functions. Recall that f = O(g) if there exists a c > 0 such that $f(n) \le c \cdot g(n)$ for every sufficiently large n. We say that $f = \Omega(g)$ if g = O(f) and that $f = \Theta(g)$ if f = O(g) and g = O(f). Also, we say that f = o(g) if for any $\varepsilon > 0$, $f(n) \le \varepsilon \cdot g(n)$ for every sufficiently large n. Finally, we say that $f = \omega(g)$ if g = o(f). Prove or disprove:

- (a) $(5n)! = O(n!^5).$
- (b) If f(n) = O(n) then $10^{f(n)} = O(2^n)$.
- (c) $\log(n!) = \Theta(n \log n)$.
- (d) Every two functions f, g satisfy f = O(g) or g = O(f).
- (e) There exists a function f such that $f(n) = O(n^{1+\varepsilon})$ for any $\varepsilon > 0$ but $f(n) = \omega(n)$.
- 2. For two languages L_1, L_2 define $L_1 \Delta L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$. We say that a class *C* is closed under Δ if $L_1, L_2 \in C$ implies $L_1 \Delta L_2 \in C$. For each class decide if it is closed under Δ (or show that it is equivalent to an open question): P, NP, NP \cap coNP.
- 3. Prove that each of the following problems can be solved by a polynomial time algorithm:
 - (a) Input: A graph *G* and a positive integer *k*.
 Question: Does *G* contain a vertex of degree at least log₂ |*V*(*G*)| or a clique of size *k*?
 (*V*(*G*) denotes the vertex set of *G*).
 - (b) Input: A list of *n* positive integer numbers A_1, \ldots, A_n and a number *T*. All the numbers are given in unary representation (i.e., a number *k* is represented as 1^k). Question: Does exist a subset $S \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in S} A_i = T$?
 - (c) Input: A 3*CNF* formula φ in which each clause contains exactly 3 distinct literals and each variable occurs exactly 3 times.
 Question: Is φ satisfiable?

Hint: Use the fact that any regular bipartite graph has a perfect matching.¹

4. Let $A \subseteq \{0,1\}^*$ be a language which satisfies $|A \cap \{0,1\}^n| = n^3$ for all $n \ge 10$. Prove that $A \in \mathsf{NP}$ implies $A \in \mathsf{coNP}$.

¹A regular graph is a graph where each vertex has the same number of neighbors. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching which matches all vertices of the graph.