- 1. Prove that the following problems are self reducible by a (direct) polynomial Cook reduction from the search version to the decision version of the same problem.
 - (a) Clique = { (G, k) | *G* contains a clique of size *k* }.¹
 - (b) GraphIsomorphism = { $(G_1, G_2) | G_1 \text{ and } G_2 \text{ are isomorphic } \}^2$.
- 2. For a number $n \in \mathbb{N}$, denote by bin(n) the binary representation of n, e.g., bin(13) = 1101. Let $L \subseteq \{1\}^*$ be a unary language, and define $bin(L) = \{bin(n) \mid 1^n \in L\}$. Show that $L \in \mathsf{P}$ if and only if $bin(L) \in \mathsf{E}$, where $\mathsf{E} = \bigcup_{c>1} \mathsf{DTIME}(2^{cn})$.
- 3. Let UpToOneSat be the following language: UpToOneSat = { $\phi \mid \phi$ is a CNF formula that has at most one satisfying assignment}. Prove that UpToOneSat \in NP if and only if NP = coNP.
- 4. We say that a non-deterministic machine is *nice* if for every input $x \in \{0,1\}^*$ the following holds: every computation path returns either 'accept', 'reject' or 'quit'. There is at least one non-quit path, and all non-quit paths have the same value. Let NICE be the class of all languages that are accepted by some non-deterministic, polynomial time, nice machine. Prove that NICE = NP \cap coNP.
- 5. The class DP is defined as the set of all languages *L* for which there are two languages $L_1 \in \mathsf{NP}$ and $L_2 \in \mathsf{coNP}$ such that $L = L_1 \cap L_2$. Let SAT-UNSAT be the language of all the pairs (ϕ_1, ϕ_2) such that ϕ_1 and ϕ_2 are CNF formulas, ϕ_1 is satisfiable and ϕ_2 is not. Show that SAT-UNSAT is DP-complete, i.e., SAT-UNSAT \in DP and every language in DP is polynomial-time reducible to it.

¹The decision version is "Given a pair (G, k) does *G* contain a clique of size *k*?" and the search version is "Given a pair (G, k) find a clique of size *k* in *G* if exists, and reject otherwise".

²Two graphs are *isomorphic* if there is a way to label the vertices of one graph, such that the two graphs become identical.