- 1. Prove or disprove or show that the statement is equivalent to an open question:
 - (a) $\mathsf{DTIME}(2^n) \subsetneq \mathsf{NTIME}(2^{2n})$.
 - (b) $P \neq NP$ or $NP \neq EXP$.
 - (c) There exists a k > 0 such that NP \subseteq DTIME (n^k) .
 - (d) For any language $L \in \mathsf{NP} \cap \mathsf{coNP}, \mathsf{NP}^L = \mathsf{NP}$.
- 2. (a) Let Σ_2 SAT denote the following decision problem: given a quantified formula ψ of the form $\psi = \exists x_1, \ldots, x_n \ \forall y_1, \ldots, y_n$. $\phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$, where ϕ is a CNF formula, decide whether ψ is true. Prove that if P = NP then Σ_2 SAT $\in P$.
 - (b) For $k_1, k_2 \in \mathbb{N}$ define the problem (k_1, k_2) -Coloring Extension (in short, (k_1, k_2) -CE) as follows: given a graph *G* and a set of vertices *S*, decide whether any k_1 -coloring of *S* can be extended to a k_2 -coloring of *G*. Show that (2,3)-CE $\in \Pi_2^p$ and that (2,2)-CE \in coNP.
- 3. (a) Prove that if $NTIME(n) \subseteq DTIME(n^{10})$ then P = NP. Hint: First use a padding argument to show that for any $k \ge 1$, $NTIME(n^k) \subseteq DTIME(n^{10k})$.
 - (b) Prove that if every unary NP-language is in P then EXP = NEXP, and conclude that if EXP ≠ NEXP then there exists a language L ∈ NP \ P that is not NP-complete. Remark: It is known that there exists a language L ∈ NP \ P that is not NP-complete assuming the weaker assumption P ≠ NP (Ladner's Theorem).
- 4. We define the class \mathbf{S}_2^p as the set of all languages *L* for which there exist a polynomial-time Turing machine *M* and a polynomial *p* such that for all $x \in \{0, 1\}^*$,

$$\begin{aligned} x \in L \Rightarrow \exists y \in \{0,1\}^{p(|x|)} \ \forall z \in \{0,1\}^{p(|x|)}. \ M(x,y,z) = 1 \\ x \notin L \Rightarrow \exists z \in \{0,1\}^{p(|x|)} \ \forall y \in \{0,1\}^{p(|x|)}. \ M(x,y,z) = 0 \end{aligned}$$

- (a) Is \mathbf{S}_2^p closed under complement?
- (b) Prove that $\mathbf{S}_2^p \subseteq \Sigma_2^p \cap \Pi_2^p$.