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This assignment contains �ve �dry� problems and two �wet� problems. E�cient solutions are always sought, but a

solution that works ine�ciently is better than none. The answers to the the �wet� problem should be given as the

output of a Sage, maple or WolframAlpha session.

1. Weak Modi�cations of Encrypted Key Exchange

Recall the EKE method to perform an authenticated key exchange between Alice and Bob who share a secret

password p taken from a dictionary D of size |D| = 230. Our prudent attacker Prudence has full control of
the communication line, so she can read, change, silence or spoof any message; nevertheless, she does not

want to be exposed so she cannot simply initiate communication with Alice 230 times, trying all passwords

from D.

The EKE protocol works like this, where Enck (x) is the symmetric 128-bit block encryption of the message

x under the key k:1

select random a
Encp(ga)−−−−−−−−−→
Encp(gb)

←−−−−−−−−− select random exponent b

calculate k = gab calculate k = gab

decipher zb
Enck(zb)←−−−−−−−−− select random block zb

beginning with the character 'b'

select random block za
Enck(za,zb)−−−−−−−−−−−→ decipher za, verify zb

beginning with the character 'a'

verify za
Enck(za)←−−−−−−−−−

If veri�cation fails, the protocol is immediately aborted. Pru can also halt all communication for a few

minutes, fooling Alice and Bob to think that the other side has had a power outage, so Alice attempts to

re-establish a connection to Bob and to renegotiate keys. Unless errors (connection or veri�cation) happen

a lot, Alice and Bob do not suspect.

(a) Alice is lazy, so instead of sending Encp (g
a) she actually sends ga in the clear. Show how Pru can

recover p without alarming Alice and Bob.

(b) Did I say Alice? sorry, I meant Bob is lazy, so instead of sending Encp
(
gb
)
he actually sends gb in the

clear. Show how Pru can recover p without alarming Alice and Bob.

(c) Ok, ok, Alice and Bob both encrypt their messages. But after they read Benny's presentation from

lecture 5, they �gured out an eavesdropper can �nd out whether k is a quadratic residue in Z∗p, so they
decided to use odd a and b to make sure that the least signi�cant bit of ab is one. Show them how

stupid is this idea.

∗Draft. Questions will not substantially change albeit might presented in a di�erent wording.
1For simplicity, the veri�cation steps were omitted in the recitation.
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2. Implementing RSA

In this problem we will implement an instance of the RSA cryptosystem using sage. Start by choosing at

random two prime numbers p > 1082 and q > 1077 such that p− 1 has a prime factor greater than 1072 and
q − 1 has a prime factor greater than 1070. Let N = pq. Pick at random e and calculate a matching d such

that (e, d) are matching encryption and decryption RSA exponents.

(a) Print (with appropriate headings so we know what these numbers are) the numbers N , p, q, e and d,
and also the complete factorizations of p− 1 and of q− 1. As a �scale for measuring lengths� print 1082

and 1072 as well so they are aligned with p and q respectively. Explain (in plain language, not in code)

how p and q were found and especially how the random choices were made.

(b) Use the simple coding scheme presented in class (space=0, a=1, b=2, . . . , z=26). Make up a short text,

encode it (ASCII to numbers), encrypt it under your public key, then decrypt using the private key.

Print the plaintext message, its encryption and the decryption.

(c) Team up with another working group. Get hold of their N and e. Encrypt your message from part (b)

under these N and e. Send the result to that group and recieve a similarly encrypted message to you.

Print the message you received, its decryption and its decoding as text. Print the name or names of the

people you cooperated with, their public key, and the encrypted message you sent them.

(d) When decrypting a message, in addition to N and d you know also the factorization N = pq. This means
that instead of calculating md mod N , it is possible to calculate md mod p and md mod q separately

and then combine them to md mod N using CRT. The bene�t from this is that Zp and Zq are much

smaller than ZN so the two exponentiations are computed faster. Implement this improvement and

measure how much time does it save you. Use larger p and q if you cannot see any di�erence.

In class Benny argued that the speed-up is approximately a factor of 4; was he essientially right?

Note: use the function timeit to �nd out how much time a calculation took.

3. Pollard ρ Algorithm

Recall that the Pollard ρ algorithm for factoring N = p · q utilizes a �random� function F (z) = z2 + c for
some value of c. The fastest way to implement it is thus selecting c = 0, saving an addition.

Explain why this is a bad idea.

Hint 1: c = −2 is not better.

Hint 2: Try to analyze �rst the case where p and q are strong primes, that is, p = 2p′ + 1, q = 2q′ + 1 for

prime p′,q′.

4. Rational Approximations of the log2 Function

Assume we have a relation 2n ≈ pm; we then can get a rational approximation to log2 p ≈ n
m . For instance,

215 = 32768 ≈ 32761 = 1812 and indeed log2 181 = 7.4998 · · · ≈ 15
2 .

Similarly, from a relation pn1
1 p

n2
2 ≈ p

n3
3 p

n4
4 we can deduce a linear equation in variables log2 p1, log2 p2, log2 p3,

log2 p4. Collecting three such relations (along with the equation log2 2 = 1), we are able to solve the system.

(a) For a set B of primes, we call a number x B-smooth if all prime factors of x reside in B.

i. Let B be the set of primes up to 150 and let M = 1000. Collect enough numbers x > M = 1000
such that both x and x+ 1 are B-smooth.

ii. Generate and solve the resulting system of linear equations to get rational approximations of log2 p
for all p in B.

iii. Compare the approximation you get for log2 99999999 to the precise value. How o� is it?

Hint: write a function that takes y and returns the vector e ∈ N|B| such that y =
∏
peii . Then form

a matrix m whose rows correspond to the linear equations and use Sage's m.solve_right to get a

solution. Make sure that you only pick independent rows, that is, that the matrix is square and has full

rank � otherwise it might be inconsistent or there might be multiple solutions.
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(b) Repeat the algorithm with M = 106. How is the accuracy e�ected? Estimate a lower bound for the

accuracy for an arbitrary value of M .

5. Low Exponent RSA

In class, we discussed a problem that occurs for low exponent RSA (speci�cally we had e = 3) when the

same plaintext x is encrypted with three di�erent moduli (x3 mod Ni for i = 1, 2, 3). We stated, however,

that there is no known problem when encrypting modulo a single N .

Suppose N = pq is 2n bits long, p is of length n+1, q is of length n−1, and n ≥ 150. Let E(x) = x3 mod N ,

and let d denote the private decryption exponent. In this problem we will demonstrate that almost half the

bits of d are easy to recover, without access to any secret information. Since in general ed = 1 mod ϕ(N),
we have in our case 3d = 1 mod ϕ(N). Therefore there is an integer A such that 3d−Aϕ(N) = 1.

(a) Prove that A = 2.

(b) Show how to e�ciently �nd an integer d̂ satisfying |d− d̂| <
√
N .

(c) Give a convincing argument (not a formal proof) why with high probability2 d and d̂ have the same
n
2 − 5 most signi�cant bits.

6. Square Roots and Factorization

We are given a composite number N , which is n bits long, and we are told it is a product of two large primes

N = p · q. Recall that every square x = z2 ∈ Z∗pq has four square roots in Z∗pq.
Suppose we are now supplied with a blackbox deterministic algorithm A (we can feed it with several inputs

and observe the outputs, but have no access to its internal working). On input y ∈ Z∗pq, A produces one of

the following: If y is not a quadratic residue, then A outputs the text �go fetch an Agama stellio for

yourself�. If y = x2 is a quadratic residue, A outputs one square root of y.

• Suppose on input y, A takes t (n) steps. Show how to use A in order to factor N with high probability

in O (t (n)) steps. Explain your analysis, and why randomization is essential in it.

7. Hybrid Encryption and RSA-based Signatures

Since RSA tends to be very slow compared to symmetric encryption, in practice a hybrid scheme is used.

One possible incarnation of the hybrid system is the following:

• To encrypt a long message m employing Bob's public key (n, e), Alice selects a random 128-bit key k,
computes c1 = AESk (m) and c2 = ke mod n. She then sends the ciphertext c = (c1, c2). Since k is

much shorter than m, we only need one RSA operation instead of one per block.

• To decrypt a ciphertext c = (c1, c2) with his private key (n, d), Bob computes k = cd2 mod n and then

m = AES−1k (c1).

The hybrid system does actually provide improved e�ciency (for long messages) without compromising secu-

rity. Note that it is a public key cryptosystem, but not a deterministic one (which actually is advantageous).

Can this hybrid system be employed for signing messages using the same paradigm we saw in class, proposed

by Di�e and Hellman and implemented in �textbook RSA signature�?3

• Show how that paradigm is translated to the hybrid context described here.

• Prove that this scheme is totally insecure: after seeing Bob's signature on any message, Fritz the forger

can create a valid signature of Bob on any other message.

2The probability here is over the choices of the random primes p and q.
3Reminder: Bob signs a message m by computing the (private) decryption of some hash function h (m) and Alice can verify it by

computing the (public) encryption of the signature.
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