
0368.3049 Introduction to Modern Cryptography, Assignment #4 Fall 2009

Introduction to Modern Cryptography, Assignment #4∗

Benny Chor and Rani Hod

Published: 29/12/2009; revised: 17/1/2010; due: 19/1/2010, in Rani's mailbox (Schreiber, 2nd �oor).

This assignment contains four �dry� problems and one �wet� problem. E�cient solutions are always sought, but a

solution that works ine�ciently is better than none. The answers to the the �wet� problem should be given as the

output of a Sage, maple or WolframAlpha session.

1. Coin Flipping Over the Phone

In class, we will discuss the application of one way functions to enable two parties that do not trust each

other to �ip coins over the phone. We assume that the parties do not deviate from the syntax of the protocol.

Still, they may try to cheat in di�erent ways, provided the messages they send have the right format. For

example, Alice could send a composite number where the protocol calls for a prime number.1

In class, we will discuss a speci�c implementation using RSA, but more generally the protocol can be cast

as follows: Let the two parties be good old Alice 'n Bob. Alice chooses F : D → D � a one-way, one-to-one

function. Let B : D → {0, 1} be an e�ciently computable predicate on elements of D. Alice starts by

sending a description of F and of B to Bob. The general protocol then proceeds as follows:

1) Alice picks an x ∈ D, computes y = F (x) and b = B(x), and sends y to Bob (this is supposed to create

a commitment to the value x).

2) Bob sends to Alice his guess for B(x), namely a bit c ∈ {0, 1}. The bit c could either be the result of a

coin �ip or the outcome of some e�cient algorithm applied by Bob in an attempt to guess B(x).

3) After receiving c, Alice sends x to Bob, who can now compute b = B(x) on his own.

4) If c = b then Bob wins the coin toss and otherwise (c 6= b) Alice wins.

The coin �ip described in class had D = Z∗N , F (x) = xe mod N , and B(x) as the least signi�cant bit of x.

(a) Explain what goes wrong if the order of steps 1) and 2) is reversed.

(b) Let D = Z∗p, F (x) = gx mod p where p is a prime number and g is a primitive element in Z∗p. Let B(x)
be the least signi�cant bit of x. Show that Bob can win this game with probability 1.

(c) Is the assumption that F is one-to-one necessary?

(d) Give a concrete example where F (x) = xe mod N is not one-to-one and Alice can cheat and win the

game with probability 1.

(e) Give a concrete example where F (x) = gx mod p is not one-to-one and Alice can cheat and win the

game with probability 1.

Give an example where F is not one-to-one but neither Alice nor Bob can cheat. You can make reasonable

assumptions if they do indeed make sense, but make sure to state them carefully.

2. Hard Core Predicates

Let F : D → D be a one-way, one-to-one function. Let B : D → {0, 1} be an e�ciently computable predicate

on elements of D. Let A be a blackbox (or �magic box�) that on input y = F (x) produces as output the bit

∗Draft. Questions will not substantially change albeit might presented in a di�erent wording.
1This speci�c attempt is not very smart since Bob will easily detect it.
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B(x). We say that B is a hard core bit for F if there is an e�cient algorithm that inverts F , using A as a

subroutine (each call to A is counted as one step). In class we stated (without proof) that B(x) = �the least

signi�cant bit of x� is a hard core bit for the RSA function F (x) = xe mod N on D = Z∗N .

(a) Let D = Z∗p, F (x) = gx mod p where p is an odd prime number and g is a primitive element in Z∗p.
De�ne

Halfp (x) =

{
0 if 1 ≤ x < p−1

2

1 if p−1
2 ≤ x ≤ p− 1

Show that Halfp(·) is a hard core predicate for F (x) = gx mod p.

(b) Let D = Z∗N , F (x) = xe mod N where N = pq, both p and q are prime numbers, and e is relatively

prime to ϕ (N). The numbers e and N are known, but N 's factorization is not given. De�ne

HalfN (x) =

{
0 if 1 ≤ x < N/2
1 if N/2 ≤ x ≤ N − 1

Show that HalfN (·) is a hard core predicate for F (x) = xe mod N .

(c) Suppose B : D → {0, 1} is a hard core predicate for F as de�ned above, and F : D → D is a one-way,

one-to-one function. Is it true that the coin �ipping protocol from Question 1 is indeed fair, i.e., no side

has any non-negligible advantage compared to an unbiased coin? Provide a short proof if the answer is

positive, and short, convincing evidence if your answer is negative.

3. TMTO Success Probability Redux

Let f : X → X be a random function; that is, f (x) is selected independently at random from X for each

x ∈ X. Our mission is to design a time-memory trade-o� for inverting f : we precompute a data structure of

size O (m), with which, given y ∈ X, we can run an O (t) algorithm trying to �nd x ∈ X such that f (x) = y.

Our preprocessing step, as described in the recitation, consists of selecting m starting points si ∈ X and

calculating for each one the respective endpoint ei = f (f (· · · f (si))) of the chain of f -applications. Formally,

we de�ne the ith chain (xji )
t
j=0 as x

0
i = si, x

j+1
i = f(xji ), and ei = xti.

In the recitation we provided informal evidence that, for m = t = |X|1/3, the data structure covers Ω(|X|2/3)
elements, and hence the success probability for a single y is Ω(|X|−1/3). In this question we will elaborate

on this lower bound.

• We say that the element xji is new if it was not previously covered; that is, if xji 6= xj
′

i for 0 ≤ j < j′

and xji 6= xj
′

i′ for 1 ≤ i′ < i, 0 ≤ j′ ≤ t. Show that Pr
(
xji is new

)
≥ e−ijt/|X| and deduce that the

expected number of covered elements is at least
∑m

i=1

∑t
j=1 e

−ijt/|X|.

• The best we could hope for is to cover mt elements. Show that we actually cover Ω (mt) elements in

expectance as long as we keep mt2 ≤ |X|, so for mt2 = |X| the success probability is Ω (1/t).

• Argue that by increasing m or t further we gain no substantial increase.2

4. Shamir's Secret Sharing

Using Sage (or a di�erent software of your choice), set up a system for 3-out-of-5 secret sharing scheme over

the �nite �eld Z7. Generate two di�erent quadratic polynomials f (x) , g (x) that have di�erent free terms

f (0) 6= g (0), yet f (i) = g (i) for i = 1, 2.

In class, we argued that the secret can be expressed as a linear combination of the shares. Demonstrate

this for two sets of participants: {1, 2, 3} and {1, 2, 5}. For each set, compute explicitly the coe�cients for

extracting the secret. For example, in case of the �rst set, you should �nd the coe�cients b1, b2, b3 such that

h(0) = b1h(1) + b2h(2) + b3h(3) for every degree 2 polynomial. Find such coe�cients c1, c2, c5 for the second
set of participants as well.

Demonstrate that for f (x) , g (x) chosen above, your linear combinations indeed work.

2Note that we will be arguing that this lower bound, rather than the actual success probability, does not improve for mt2 � |X|.
But the analysis is essentially tight.
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5. Reusing Randomness in El Gamal Signature Scheme

Recall that in El Gamal signature scheme, discussed in lecture 9, the signature generation is randomized.

The signer is supposed to choose a new, independent random k for signing each message. Show that if the

signer uses the same k for signing two di�erent messages, then it is possible to extract the secret key, x, from
two (signature, message) pairs and the public key. Write down equations for x given all this information.

If you need some assumptions for solving the equations, state them and estimate how likely they are to be

satis�ed.
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