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1) 

Proof by induction (upside down: base case is top most  , inductive step is from height   to height    ) 

Let   be the size of the heap, so the height of the heap will be ⌈     - the root is at the top most level, and since a heap is a 

left filled binary tree, all levels but the last are completely full and the last level will have between 1 and until completely 

full nodes. The ceiling notation denotes we have a discrete number of levels, and rounding up accounts for a whole level 

even if it’s not completely full. 

The root of the heap is a single node at the top most level, that is   ⌈    . Let   {
      ⌈    

 ⌈           ⌈  
 – the number of 

nodes in the root is indeed ⌈
 

 ⌈      
⌉  ⌈

 

  
⌉  
   

 . 

Now we will assume that the above is true down to and including height    , and prove for height  : 

If the level at height   has any elements, that means the level at height     is not the last one, so by the heap conditions 

it must be full, and by the inductive assumption it has exactly ⌈
 

 (   )  
⌉ nodes (at most if it was the last level) which are 

⌈
 

    
⌉ nodes. The level beneath it at height   will have: 

- Exactly twice as much nodes if it is also not the last level (by the heap conditions). 

- At most twice as much nodes. 

Thus the number of nodes at height   will be at most  ⌈
 

    
⌉  ⌈

  

    
⌉  ⌈

 

    
⌉, as required. 

 

2) 

If   is an array of size  , the running time of HeapSort for an initial   both sorted in increasing order and decreasing order is 

 (    ). The reason for that is: 

 The build-max-heap procedure runs in  ( ) time in both cases, as we proved with the amortized analysis in class. 

When the array is in a decreasing order no actual swap has to be taken since the array already satisfies the max-heap 

condition, but it is still  ( ) (going through the elements and comparing them with their children). 

 The second phase starts in both cases when all nodes at each level are bigger than all nodes at the level beneath it. 

That means each swap of the root (max) with the last node in the heap will result with heapifying the new root down to 

the maximum. Each step we remove the maximum, decreasing the size of the heap by 1. That results with each node 

that was put instead of the maximum being heapified down ⌈  (            )  levels, which means a total of 

  (   )   (    ). 

To conclude, in both cases due to the heapify operations the running time is  (    ). 
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3) 

Let         be   sorted lists of sizes         such that    
 
     . Here is an algorithm to merge all lists (keeping the 

new sequence sorted) in  (    ) time: 

First, note that:       (there is at least 1 list and at most   lists). 

We will assume the lists are sorted in a decreasing order, and that there are three  ( ) procedures that can be applied on 

any list: 

 top: returns the value of the element at the top of the list (the maximum). 

 pop: removes the element at the top of the list and returns its value (the maximum). 

 size: returns the size of the list. 

The algorithm: 

1. Let result be a new empty list. 

2. Build a Heap of size   called list-heap from all lists        , looking at their top as the list’s representing value. 

3. For     to  : 

3.1. If the size of the top-most list is 1: 

3.1.1. Remove the list, pop it and append the value to result. 

3.1.2. Put the last list in the heap at the root instead. 

3.1.3. Update the heap size to be   . 

3.2. Otherwise: 

3.2.1. Pop the top-most list and append the value to result. 

3.3. run max-heapify(list-heap, 1) 

4. Return result. 

Correctness: 

Since all lists are sorted in a decreasing order, the maximum of all the top (maximum) values of all lists is the absolute 

maximum. Therefore after the initial list-heap build and after every iteration in phase 3, the maximum of the top-most list is 

the absolute maximum – and smaller than all extracted maximum so far – so the result list is built in a decreasing order (this 

could be more rigorously shown by induction). 

The correctness of the heap-list condition (the top of the top-most list is the absolute maximum of the heap) is kept along 

the iterations because: 

 If 3.1 applies, we completely remove a list from the heap, and the correctness is kept just like in a normal heap – the 

last element put at the root makes sure the heap is kept left-filled, and heapifying it down keeps the heap condition, so 

the top of the top-most list is the absolute maximum. 

 If 3.2 applies, after popping the top-most list we heapify it down, thus keeping the heap condition. 

Running   iterations makes sure we get all elements in all lists. 

Therefore we eventually get all   elements sorted in a decreasing order in the result list result. 
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Running time: 

1. Creating a new empty list is  ( ). 

2. Building the list-heap given top costs  ( ) and   lists is  ( )  
   

 ( ) (as shown in class). 

3. Each of the   iterations costs  (   ), as this is the cost of max-heapify in a  -size heap   the total is  (    ). 

  the total running time is  (    ), as required. 

 

4) 

I will interpret an almost-sorted input for the problem presented in the question as follows: each element in the input array 

is in an environment of elements such that it might not be sorted in that environment, but it is greater than all elements to 

the left of that environment, and less than all elements to the right of that environment. And most importantly, the size of 

that environment is of a constant size. In other words: 

For            :                       {
             
             

 

In that case, the running time of insertion sort will be   times   some constant   (could be    *  +) since no more than 

that number of comparisons (and swaps) is required, resulting in  ( ). 

However, using quicksort even with the best constant possible (derived from the best division – when the pivot is selected 

as the median for each split) is still  (    ). To be more precise, in this case since we have     sorted bins, each 

containing   unsorted elements, each iteration in quicksort will divide the next phase into one recursive call over a constant 

number of elements (at most     to be exact, to the left of the chosen pivot) and the other recursive call would be over 

     elements,   being the level of recursion. Since it is not a portion on   on each side of the pivot, as seen in class, this 

would result in a  (  ) running time. 

Therefore, under some assumptions regarding the exact constants that play here, using insertion sort for an almost-sorted 

input would be more efficient than using quicksort. 

 

5) 

The proof that the running time of the suggested algorithm is  (      (
 

 
)) has similar arguments as presented in the 

answer to question #4. 

The “quicksort” part of the algorithm costs as follows: 

 The total cost for each level of the recursion is  , since in total for each level   we have    calls of quicksort on inputs of 

sizes     , thus resulting in   for each level. 

 We continue the recursion until we get bins of size  , thus the height of the recursion tree would be as if we were 

running “regular” quicksort on an input of size 
 

 
. Therefore the height of the tree is   (

 

 
). 

That concludes to a total cost of this part of  (   (
 

 
)). 
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Now the “insertion sort” part runs on an array divided into 
 

 
 bins of size   such that there’s a total order between the bins 

(meaning all elements in bin   are greater than all elements in all bins        ), but no order within each bin is promised. 

That means that the insertion sort will move each of the   elements at most   places (and perform   comparisons), 

resulting in a total cost of  (  ). 

The total cost is therefore  (      (
 

 
)). 

In theory   should be picked in a way that it will satisfy   (      (
 

 
))    (    ),       being the constants derived 

from the exact implementation of the quicksort and insertion sort procedures. In practice a series of experiments should be 

performed to set the threshold, taking into consideration other factors such as machine characteristics and expected input 

size. 

 

6) 

If the select algorithm used a division into groups of 7 elements, it would still be linear. Compared to the analysis in the 

original algorithm, where (in the book)  ( )   (⌈    )   (       )   ( ), here: 

If we divide   into groups of size 7 we will get ⌈
 

 
⌉ groups. After finding the median of medians, we know in a similar manner 

to the original argument that at least half of the ⌈
 

 
⌉ groups contribute at least 4 elements that are less than  , except for 

the group with fewer than 7 elements (if   is not divisible by 7) and the group that contains  . So the number of elements 

that are less than   is  (⌈
 

 
⌈
 

 
⌉⌉   )  

  

  
   

  

 
    in worst case the recursive call to select will be on at most 

  

 
  . 

Therefore the recurrence is  ( )   (⌈    )   (      )   ( ). Now by substitution we will show an upper bound of 

  , proving at most linear running time: 

 ( )   ⌈      (      )      /   is the constant for  ( ) 

                    

             

    (           )   /                    
 

    
        {

     
     

 

    

So for       and choosing       we get  ( )   ( ), as required. 

 

If we use division to groups of 3, the algorithm will not be linear. The intuition for that is that for 3 we get that the number 

of elements less than   is:  (⌈
 

 
⌈
 

 
⌉⌉   )  

 

 
    there are 

  

 
   in worst case for the recursive calls. That concludes to 

the recurrence:  ( )   (⌈    )   (      )   ( ). But the total sum of the recursive input of the recursive calls is 

more than  , giving a hint that the  ( ) won’t “take on” the recursive calls, giving a larger running time. 

Using substitution we show that  ( )   (    ): 
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 ( )   ⌈
 

 
⌉    ⌈

 

 
⌉   (

  

 
  )   (

  

 
  )       /   is the constant for  ( ) 

 
  

 
(       )  (

   

 
   ) (      (   )     )     / removing    and     lowers the sum 

/   (   )      

 
 

 
      

 

 
      

 

 
      

 

 
         

                     / choose   
 

   
 (         )    

       

  ( )   (    ), so definitely  ( )   ( ) when dividing to groups of 3. 

 

7) 

Here is an algorithm in  ( ) running time to find the   closest (by position, not value) number to the median of a set   of 

distinct numbers (we address the lower median as the median): 

The algorithm: 

1. Let   be an empty set to contain the required output. 

2. Let   be an array containing the elements in  , and           . 

3. Find         (      ⌊   ⌋) – the (lower) median of  . 

4. Run          (   ), set the left to be    of length    and the right to be    of length   . 

5. If   is even: find         (              ) and         (           ) 

6. Otherwise: 

a. Find         (           (   )  ) and         (        (   )  ) 

b. Randomly select either       (          (   )    ) or       (       (   )    ) and add to  . 

7. Find all elements between   and   and add them to  : run partition on       and      and add to   all elements in    

that are bigger than or equal to   and all elements in    that are less than or equal to  . 

8. Return  . 

Since we are using a set of distinct numbers, we know the partitions we run would give us exactly     (or (   )  ) 

elements to be added to   for each side of the median. We take care of the extra element in the case of an odd   by taking 

one randomly, and since they both have the same distance from the median it doesn’t matter which. Each procedure ran in 

the algorithm is either constant or linear, concluding in a total  ( ) running time. 

 

Note: the algorithm below is for the case we are required to return the   closest by value. Skip it if it’s unnecessary. 

First we define the following procedures: 

            ( ): sets   {
     
   (   )       

 – if   is larger than  , it moves it to be at the same distance of   

but from below. 

             : if   was normalized, it sets it back to what it was and returns it. Otherwise it just returns it. 
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The algorithm: 

1. Let   be an empty set to contain the required output. 

2. Let   be an array containing the elements in  , and           . 

3. Find         (      ⌊   ⌋) – the (lower) median of  . 

4. Run          (   ) 

5. For each                        ( ) – finding all such  ’s is simply taking the right side of   in   after the 

partition. 

6. Remove   from  . 

7. Let         (             ) 

8. Run          (   ) 

9. For each            : put              in   

10. Return  . 

What the algorithm does is finding the median, normalizing all elements to be lower than it but keeping the original 

distance from the median, and then finding the     order statistic of this new array. Surely all the elements that are 

larger than that order statistic, taking their original non-normalized value, are the ones closest to the median (since all 

numbers are distinct, we won’t get “holes”, but I won’t elaborate on that here). 

Running time: every step of the 10 steps above is  ( ), thus concluding to a  ( ) running time, as required. 

 

8) 

The intuition to find an algorithm in the required running time is that it would be a recursive algorithm such that the height 

of the recursion tree is    , thus dividing the task into two completing tasks each level of the recursion. 

Here is an algorithm to find the      th quantiles for an input array  : 

1. Let             be an empty list to accumulate the quantiles. 

2. Define                 (   ) as follows: 

2.1. If    : 

2.1.1. Let            

2.1.2. Let   ⌊   ⌋  
 

 
 

2.1.3. Find             (      ⌊ ⌋) and add it to            . 

2.1.4. Run          (       ), set    to be the left side including the       and    to be the right side. 

2.1.5. Call                 (   ⌊   ⌋) // find all  th quantiles to the left 

2.1.6. Call                 (   ⌈    ) // find all  th quantiles to the right 

3. If required sort            . 

Each iteration finds the median  th quantile of the set of   quantiles that is contained in this iteration’s input array (as in 

the book, we take the lower median in case it is out of an even-sized set). For instance, the first iteration finds the median 
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of the total set of  th quantiles; the first recursive call under that iteration finds the median of the left half of the  th 

quantiles set, and the second recursive call finds the median of the right half of the  th quantiles set, and so on. 

That means that each iteration partitions the input into 2 inputs for the next calls that each contains at most half of the  th 

quantiles that are contained in the current iteration. This process will then repeat     times – as each recursive call 

contains twice as less  th quantiles as the call before it. In addition, every call costs  (                   ), as the select 

and partition procedures are linear in their input, plus some constant time operations. Each level has input array twice as 

less as the level before it and each level has twice as much calls as the level before it – thus concluding to  ( ) total cost 

per level. That concludes to a total cost of  (    ), as required. 


