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Point Location Problems 

Last time we saw range query, where the query was a  -dimensional box. 

Given an arbitrary piecewise linear decomposition of the plane (PSLG), or generalized – a set of segments, we want to know 

in which regions (or under which line segments) a query point resides. 

The basic point location in 2-D: find the face that contains a particular query. 

Inefficient query: just check the  ( ) faces (according to Euler’s formula) for the query point. 

We want an efficient – both time and space – query algorithm, that uses  (   ) time and  ( ) space. 

 

Trivial algorithm: 

 Sort the   segments with respect to the    endpoints, and cross a vertical line at each endpoint. 

 Label all subdivisions of the faces by the faces they are contained in. Note that there is no intersection between two 

regions. 

 In every vertical line there are at most   lines crossing it. So per strip (the grey in the figure above) we can do a binary 

search. 

 Given a query point: identify the  -value of the point and the corresponding strip, and in it find the region. Total 

searches: 2 – i.e.       (   ). 

But the data structure is not efficient:  (  ) space. Example where that happens: 

 

Another problem with this data structure is that it is not dynamic – linear time to update it. 

  



2 
CS623 \ lec06 2012-02-21  Ariel Stolerman 

Kirkpatrick’s Algorithm 

Assumption: 

 An option is actually a triangulation. Each given planar graph can be represented as its 

triangulation with  ( ) triangles and  ( ) edges. 

 Anywhere outside the object there is an infinite space. If a face is not a triangle, we can 

extend it to a triangle in that infinite region – and that would not change the linear 

complexity.  

The algorithm: 

Let   be a map corresponding to a triangulation. 

We start with    that has all triangles of the complete triangulation of an object. 

At each step we remove a portion of the triangles (some   ) until eventually at the level   we have 1 triangle, and 

   (   ). 

Each time we drop a vertex, we need to re-triangulate. We cannot drop arbitrary vertices, like vertices with very large 

degrees. For instance, if a vertex with √  edges (i.e. is part of that much triangles) is dropped, then in the navigation phase, 

when we get to that level, we need to check, going down the structure, all edges - √ . Therefore we can remove only 

vertices with a constant degree. In other words: Each triangle in      overlaps  ( ) triangles of   . 

Lemma: Any planar graph has an independent set of size  
 

  
, and every vertex of that set has degree of at most 8. 

 

In the diagram above     are independent, and removing them removes a constant number of triangles. 

Suppose we want to go from    to     . When we drop a vertex, we remove triangles and get a coarser mesh, and we need 

to triangulate it. If the dropped vertex   degree is  , we drop   triangles, and re-triangulate that mesh with at most     

triangles. We will cross triangles not between adjacent vertices. 

Navigating the structure we get is  (   ), and at each phase we do at most 8 tests. 

By a greedy algorithm of each time taking the vertices with degrees 8 and descending we get the independent set. 

Proof of lemma: 

First, all vertices have degree at least 3. By Euler’s formula: ∑    ( )     | |           (since       ). 

 Claim 1: the number of vertices with degree    is at least 
 

 
: 
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Assume by contradiction that the number of vertices with degree    is at least 
 

 
, and denote that set   . We know that for 

all vertices        have    ( )   , denote that   . Adding up: ∑    ( )    ∑    ( )    
 ∑    ( )    

   
 

 
 

  
 

 
   , but that’s a contradiction to the upper strict bound above. 

Therefore we have a set     such that         ( )    and | |  
 

 
. 

Now we greedily remove vertices with degrees 8. When removing such a vertex, we removed at most 9. We can repeat this 

process 
| |

 
 times, meaning | |  

 

  
 – our independent set. 

Construction of Hierarchy: 

 We start with    and an IS    of size 
 

  
 with max degree 8. 

 In    after removing    we get   
 

  
 vertices. 

 In   :   
 

  
 

  
 

  

  
. 

We never pick the outer triangle’s vertices. Therefore, after at most       
  

        levels we get to the only triangle 

    . The tree of    is our search tree. 

Example: 

 

This data structure is in fact linear. Counting the elements in the layers of the tree: 

 (        (     )   )      (since it is a converging sum). 

What’s not good? Adding a new edge will mess up the data structure. 
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Trapezoidal Maps 

 

A tessellation data structure that supports: 

 Input of non-intersecting segments   *       + 

 Query point  , report the segment directly above  . 

This is a generalized case of a PSLG. As before, we draw vertical lines but we halt at the first segments encountered on the 

way. With   segments we have    vertices and  ( ) faces. 

In order to avoid infinite faces we hold a bounding box around the segments. Assume we have a trapezoidal map, and 

started with   line segments. Shooting the vertical segments create new vertices. The new tessellation will have at most 

     vertices and      traps (trapezoids). 

Proof: 

For any segment, we have 2 vertices, each of them will have at most 2 new vertices (crossing the vertical lines), in total   . 

to that we add the 4 vertices of the bounding box. 

Proof that we have      trapezoids: 

Assume every trapezoid is labeled by its left boundary (dotted line), as its support edge on the left. Claim: each one of the 

right points of the segments can be a support of one trapezoid. We have   such points, so we have   trapezoids to start 

with. Every left point characterized at most 2 trapezoids – the one to the left and to the right of the line that goes through 

it. On top of that we add the left bounding box trapezoid, and get a total of     . 

The incremental construction: at some stage   when we add a segment, it intersects some of the vertical lines, and we need 

to also shoot the vertical lines of its endpoints. 

Complexity: 

The final product is dependent on the order in which we add the segments to the structure. 

Lemma: segment  ’s insertion takes  (  ) where    is the number of new trapezoids introduced from      to   . 

Proof: 

Assume    intersects   existing rays, the total of     rays need processing (the additional 4 are from the new ones we 

shoot from the endpoints of   ). 
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If    , it is only 4. Otherwise, we need to break it to upper and lower pieces. So we need to add to the DECL 2 vertices. In 

a DECL each ray processing will cost  ( ). In the worst case,     ( ), and if it happens for all   we get a total of  (  ). 

But, with a randomized construction we will get  ( ) at each phase. For each    the expected number of trapezoids created 

is constant. 

Random construction: 

We are looking for  ,  - over all permutations of order of insertion of    to the structure. We will show  ,  -   ( ). 

Proof: 

Assume    is a map after   ’s insertion. It is dependent on        , but is not dependent on the order they were inserted – 

as that part will always result with the same partial trapezoidal map. 

When we reshuffle them, the probability to choose any of them to be the last one is 
 

 
. Say   is a trapezoid dependent on 

the last segment added,  , i.e. added when   was inserted as last segment. Let  (   )    if   was created as a result of 

adding  , or 0 otherwise (  is an indicator value). 

 ,  -  ∑ ∑   , -   (   )        
 – The sum over all probabilities of certain   chosen, times the number of trapezoids 

dependent on it. That value is:  ,  -  ∑ ∑   , -   (   )        
 

 

 
∑ ∑  (   )        

 
 

 
∑ ∑  (   )        

. 

Each   is dependent on 4 segments. 2 segments are top and bottom segments, and 2 are those with endpoints creating the 

vertical left and right edges of  . Therefore ∑  (   )    
  . Now:  ,  -  

 

 
∑      

 
 

 
|  |  

 ( )

 
  ( ) – constant   

The data structure: 

 

 X-nodes (circles): x-coordinate of segment endpoints. At each point we get to such node, we check whether   the 

query point is to the left or right to that node. 

 Y-nodes (hexagons): pointer to a segment. At each such node, we check whether   is above or below the segment. 

 It is a DAG, so no cycles. 

 Each leaf is a trapezoid. 

For efficiency, the height has to be  (   ), and at every node we need to do a constant amount of work. 

The construction is incremental, i.e. we start with an empty trapezoid and bring in the segments one at a time. 

  



6 
CS623 \ lec06 2012-02-21  Ariel Stolerman 

Adding a segment: 

 

Since we have a DECL, we can check    times which edges our    intersects (4 checks per each added trapezoid, to locate 

the edge    intersects). We query the two endpoints of   , and the 2 trapezoids they reside in will be replaced (    above). 

In addition, the trapezoids in between will be changed. All changes are local. 

Every old leaf (trapezoid) we replace, will create a local DAG with depth at most 3. 

Every trapezoid that is completely cut, will be replaced by two trapezoids. It is cut by the segment – so   is replaced by a   

node – the segment   , with two children -    . 

When an endpoint region is cut, e.g.  , it is replaced by an x-node, with left and right children. The left child is a segment 

with two leafs, and the right – a leaf as well. so   was replaced by a depth 2 DAG. Same for  . 

Expected complexity: 

Space  ( ), query  (   ). 

Analysis: in the slides. 


