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Voroni Diagrams 

 

 Records information about what is closed to what. 

 We denote the set of points   *          + as sites. 

Voroni region 

 (  )  {         ‖   ‖  ‖   ‖} – the region of points that are closer to    than to any other sites    (   ). 

The subdivision of Voroni region imposes a partition of the space. 

The definition of the Voroni diagram can equivalently be defined by intersections of half spaces. 

Half-plain: a space bounded on one side by a line in the space. 

Bisector: the line perpendicular to the segment between two points      . We denote the half-plain defined by the bisector 

between    and    by  (     ) – and any point there is closer to    than to   . That half plain is a convex set. 

In the case of 3 points: 

 

The intersection of  (     ) and  (     ). 

In the general case:  (  )  ⋂  (     )    

   

 – the intersection of all half-spaces as defined above. 

Since any half-space is convex, the intersection is also convex. 

Voroni diagram: If we remove the interior of the open sets which are the regions, the boundary of all regions together form 

the Voroni diagram. 

  

Voroni region 

Of 𝑝𝑖  
𝑝𝑖 

𝑝𝑘 

𝑝𝑗 
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For any shape we can look at the Voroni diagram of it as a skeleton of the shape (imagine we burn the regions / shapes – 

the points in which all “fires” meet is the Voroni diagram). 

Delaunay Triangulation: The Dual of all Voroni diagram. If we know one, we can build the other from it. 

General position assumptions: 

 Degree: At most 3 points will be sitting in a circle. This means that any Voroni vertex will have a degree at most 3. 

 Convex hull: looking at the faces (Voroni regions), they are convex. 

Given   sites, we can add another vertex in infinity and connect all infinity edges of the VD and we will get a planar 

subdivision with   faces. The number of vertices will be at most      and the number of edges -      (by Euler’s 

formula). 

Computing VD: 

Naïve algorithm: computing each  (  ) by the intersection with all     corresponding bisector half-planes  (     )     

-  (     ). 

Fortune’s algorithm 

This is a plane-sweep algorithm that at any given point of time it saves: 

 The sweep structure 

 Events – not trivial as in the segment intersection algorithm. 

To not allow infinity edges, and we know the number of edges is linear, we can bound those edges. 

 

How can the sweep algorithm know the existence of this vertex until it sees the site? By the time it sees it, it’s too late – the 

events are unanticipated. In the diagram: only when we get to the lowest vertex we will know the events marked as 

“unanticipated events”. 
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The beach line participates in our sweep line structure. The vertices of the beach line: 

 Have the same distance from the 2 sites adjacent to the segment that passes through that vertex. 

 Will have the same distant from the sweep line as the distant from the sites above. 

Meaning, if we draw a circle centered at those vertices with the two sites mentioned, the circle will be tangent to the 

sweep line. 

As we advance the sweep line, the regions behind the beach line (those who don’t change) are set for the rest of the 

algorithm and will not change. 

Instead of distorting the boundaries of the regions, we will distort the sweep line. The position of the sweep line and the 

beach line defines our structure. 

Two types of events: 

 Site events – know ahead. 

 Vertex events – might be unanticipated. 

The portion above the sweep line will be maintained in a DCEL. 

Every point that is part of the beach line have the same distance from the sweep line as one of the sites. Every site   will 

have its own parabola. 

 

The beach line is the lower envelope of all those parabolas. In the degenerate case when   is on  , the parabola is actually 

the perpendicular of   on  . 

Note that any site may have more than 1 segment of its corresponding parabola to maintain – how many of those could 

there be? That number will affect the complexity. The beach line is a  -monotone object. 

 

The algorithm: 

 We track the breakpoints along the edges of the VD. 

 On the move of the sweep line, the parabolas constructing the beach line constantly 

change. 

Status: 

 Current location  -coordinate of the sweep line. 

 Left to right set of sites that define the beach line. 

 The parabolic arcs can be calculated from the above, no need to hold them. 
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Events: 

Site events: 

A new arc is inserted to the structure. 

 

 

Vertex events: 

The moment 3 arcs become adjacent on the beach 

line, we know at what distance (by calculating the 

circle of their 3 sites) the vertex will be. 

The distance            . 

 

All the complications of updating the structure are linear. 

Reminder: we use a bounding box, and a DCEL representation. 

Site events: 

 

 Known ahead of time, as we get them we sort them. 

In the worst case, when all sites participate in the beach line, how many active segments can we have? at most     : 

When we encounter a new site, it shoots a ray up. Any site may shoot a ray to partition its previous parabola, so we get this 

number. 

Whenever a new site is encounter we need to identify where it will be inserted, and since we have  ( ) arcs, we can hold 

the active sites in a structure that will allow logarithmic insert operations. 

Generation of the vertex events is constant in the number of site events. 

Vertex events: 

Those are generated dynamically as the algorithm runs. Each event is generated locally. When we process a new site, we 

make sure the beach line is maintained properly, and make sure we catch all vertex events that we can now discover (in 

constant time). 

Let          be adjacent sites, i.e. the corresponding segments for       share a vertex, and       share one as well – a 

potential for creating a vertex event. The moment the sweep line gets to the point that is tangent to the circle that goes 

through all          then this is an event – and we can compute the vertex. 

From that point on       are adjacent, and if       are before    and after    respectively, there might be a new event after 

a new vertex is found and    is removed. 
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Beach line: 

 The beach line is represented by a dictionary (balanced tree). 

 We do not explicitly store the parabolic arcs, we can compute them from the sites and the 

sweep line. 

 The breakpoint, center of the circle that goes through       and tangent to the sweep line  , 

can be computed from those. 

Supported operations: 

 Given a location of the sweep line, determine the arc of the breach line that intersects a given 

vertical line – simply apply a binary search to find   . 

 Successor and predecessor can help find       to complete the calculation. 

 

 Deleting an arc. 

Every operation is logarithmic 

 

Event queue: 

 A priority queue with the ability to insert and delete events – can use a heap. The key: max  -coordinate. 

 Once we have a vertex, we need to insert it to the DCEL – constant given          (knowing the site means knowing 

the face). 

Vertex event: 

         are sites that create the event. We know that when   gets to the position, we have a vertex that is distant the 

same from all the above. At this point       become adjacent on the beach line. We initiate the edge that starts at that 

vertex downwards. The region of    is not relevant anymore. 

If we have                   ,    may create a vertex event in one of the three consecutive triplets. But, once    forms a 

vertex with      , the other two events it might have been taking part of, are irrelevant and we drop these 2 events. 

Running time: 

 Each event is  ( ) processing time plus a constant number of accesses to various structures. 

 Each access is  (   ) and the structures are all of size  ( ). 

 The total running time is then  (    ). 

The total complexity is that of creating the DCEL times how much each costs – since the DCEL is linear, and each operation 

is  (   ) we end up with  (    ). 

 


