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Home Assignment III

1. Write down the iteration sequence for the mapping Ax = x2 if x0 =
1

2
.

2. Find all the fixed points of the mapping Ax =
1

1 + x
on the segment

[0.5, 1]. Whether this mapping is contractive?

Find all fixed points of the mapping A : R
2 −→ R

2:

3. A(x1, x2) = (x1,−x2);

4. A(x1, x2) = (x1, x
2
2).

Find a segment [α, β] for which the existence of solution is garanteed for the

given initial value problem:

5. x� = 2tx2, x(1) = 2, on the compact V = {|t − 1| � 1, |x − 2| � 1};

6. x� = 2tx2, x(0) = 1, on the compact V = {|t| �
√

2
4

, |x − 2| � 1}.

7. What conditions should be put on functions p(t) and q(t) s.t. the linear
equation x� + p(t)x = q(t) will have a unique solution for any initial
condition x(t0) = x0?

8. Using the Picard process, find the exact solution for the initial value
problem x� = t + x, x(0) = 1. What is the domain for the obtained
solution?

9. Denote by Jp(x) the p-th Bessel function, i.e. the solution of the equa-

tion x2y�� + xy� + (x2 − 1
4
)y = 0 corresponding to r =

1

2
. Check by

direct computation that

J 1
2
(x) =

�

2

πx
sin x, J− 1

2
(x) =

�

2

πx
cosx.

10. Formulate the Picard’s Existence and Uniqueness Theorem for a system
of ordinary differential equations of the first order. Modify the proof
given in the class to fit this case. (This exercise is not compulsory, but
it is very useful.)
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Answers:

1. xn =
1

22n
.

2. X =
2

1 +
√
5
, A is a contraction.

3. The axis x2 = 0.

4. The straight lines x2 = 0 and x2 = 1.

5. [1− 1
36

, 1 + 1
36
].

6. [−
√

2
4

,
√

2
4
].

7. Continuity of p and q on R is enough.

8. x(t) = 2et − t − 1, defined for all t’s.
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