Assignment 2 - Software Project, Fall 2009

Due: December 15, 2008. Submit in pairs.

In this exercise you will provide several implementations of matrix multiplication algorithms. You
will analyze their performance and select the most efficient implementation. You can limit your imple-
mentations to square matrices in which the number of rows is equal to the number of columns. The as-
signments website, http://www.cs.tau.ac.il/~ozery/courses/soft-project09/Assignments. php,
provides the file framework for this project, which is detailed at the end of this assignment. You are
required to strictly follow the provided function prototypes and the file layout. Note that for a n x n
matrix we refer to n as the size of the matrix.

Ex 2.1 mlpl (50 pts)

(1) Code requirements:

a. For the simple iterative matrix multiplication algorithm, implement all the six options of loop
ordering (ijk, ikj, jik, jki, kij and kji) as explained in class. These functions should appear in a file
named multiply.c and comply to the prototypes provided in multiply.h (found on website).

b. A matrix is kept in a 1D array, where the elements are ordered by columns (!!!): the first n
elements correspond to the first column, the next n elements correspond to the second column,
etc. Specifically, the entry (i,j) of the matrix, should be accessed as A[i + j*n]. The type of the
elements is elem (defined in matrix.h).

c. Use get matrix_space and free matrix_space to allocate and free memory for matrices. These
two functions are defined in allocate_free.h and implemented in allocate_free.c. An example
for allocating a n X n matrix, A:

elem *A;
A = get_matrix_space(n);

d. The following procedure, defined in matrix manipulate.h, should be implemented in
matrix manipulate.c:

void fill_matrix(elem A[], int n);

This procedure fills A, a n X n matrix, with random integers in range [—50, 50]. Implement using
rand() (see man 3 rand).

e. Your main program, implemented in a file named mlpl.c, should start by reading an integer k
from the standard input, and proceed as follows:

Case 1: k < 0. In this case, for n = 4,8, 16,32, 64, 128,256,512, 1024 (use for loop):

1. Allocate two n x n matrices, A and B. Fill A and B with random integers in range
[-50,50] by calling £ill matrix.

2. For each possible loop ordering - multiply A by B using the procedures defined on
multiply.h (i.e. mult_ijk, mult_jik, etc.). Measure the running time of each
loop ordering using clock(). For example,

#include <time.h>
clock_t t1,t2;
t1l = clock();
mult_ijk(a,b,c,n);
t2 = clock()-t1;
printf("total time in CPU ticks = %1ld\n",t2);

The output of your program should be the running times of your multiplication proce-

dures. For each matrix size, print a line with the matrix size followed by the running

times of the all matrix multiplication procedures. The order of running times should be:
ijk , ikj , jik , jki , kij , kji. The running times are the total number of CPU ticks spent
in each procedure. The output values should be separated by commas. For example:

4 , 10000 , 10000 , 10000 , 10000 , 10000 , 10000
8 , 10000 , 10000 , 10000 , 10000 , 10000 , 10000

Case 2: k > 0. In this case, k, which represents a matrix size, will be followed by a set of 2k?
integers (separated by spaces). Read these numbers into two k x k matrices, A and
B. Multiply A by B using the multiplication procedure with the best loop ordering
(selected according to the measurements in case 1). The output should be printed in
the same format as the input (i.e. the matrix size followed by a sequence of integers,
separated by spaces). Examples of input and output files can be found at the web site.
You can use the diff command to compare them to your results.

(2) Run your program in the Linux lab. Prepare a graph, which plots the running times (in CPU
ticks, Y-axis) as a function of the matrix size (X-axis)®.

(3) Measure the performance of your program using gprof (explained at the end of this assignment).
Use the obtained statistics to improve the performance of your program and submit the most efficient
code that you can write. Submit the obtained statistics for your program performance (print the short
version of the gprof output, by running gprof -b). Compare gprof results to the results of your

measurements in (a)?.

(4) What is the most efficient loop ordering? Explain why.

(5) Submit the details of the computer (in the Linux lab) that was used for your measurements. To
do so, print the file /proc/cpuinfo.

You can save the output of your program as a *.csv file, which can be open by Excel. In Excel, go to the Chart Wizard
and plot your data as XY (Scatter).

2Look at the performance ratio of the procedures. Ignore absolute running times which may differ for gprof and
clock().

Ex 2.2 block mlpl (50 pts)

(1)

a.

Code requirements:

Implement the blocked algorithm for matrix multiplication. Use only the loop ordering that was
selected to be the most efficient in 2.1. This procedure should appear in a file named multiply.c
and comply to the prototype provided in multiply.h:

void mult_block(elem A[], elem B[], elem C[], int n, int r);

A and B are two n x n matrices and r is the block size. Assume n = 2™, and r = 2!, where
1 <1< m. As before, the elements in each matrix are ordered by columns.

Your main program, implemented in a file named block mlpl.c, is similar to mlpl (as defined
in (1).e in Section 2.1). The program should start by reading an integer k from the standard
input, and proceed as follows:

Case 1: k£ <O0:

1.

For n = 4,8,16, 32,64, 128, 256, 512, allocate two n X n matrices, A and B. Fill A
and B with random integers in range [-50,50] by calling £ill matrix. Compute
A % B, using mult_block with r = n/2.

Allocate two 1024 x 1024 matrices, A and B. Fill A and B with random integers
in range [-50,50] by calling £i1l matrix. For [= 1,2,...,9, compute A x B, using
mult_block with r = 2!,

For each call for matrix multiplication (i.e. computing A % B), print a line with:
matrix size, block size, and the running time in CPU ticks. Separate the numbers
in each line by commas. For example:

4 , 2, 10000

8, 4, 10000

512, 2566 , 10000
1024 , 2 , 10000

1024 , 512 , 10000

Case 2: k > 0. In this case, k is a power of two. After k, which represents a matrix size,
will follow a set of 2k? integers (separated by spaces). Read these numbers into two
k x k matrices, A and B. Multiply the matrices A and B using mult_block with

r

= min(n/2,r"), where ' is the block size that leads to the best performance for

n = 1024.

(2) Use the output of block-mlpl (when the input & < 0) to plot a graph describing the running time
as a function of matrix size n, when r = n/2. The X-axis should be the matrix size n and the Y-axis
the running time in CPU ticks. Analyze the results.

(3) For a matrix size n = 1024, which block size leads to the best performance? Explain why.

More Information on the Submission

File framework

Below is the description of the file framework for this assignment which you should strictly follow:

e The code for all the multiplication algorithms should be written in file multiply.c and should
comply to the prototypes provided in the file multiply.h.

e The file matrix.h contains the definitions of the data types. Here, you may add general definitions
of your project.

e The file matrix manipulate.c should contain the implementation of the functions whose proto-
types are defined in the file matrix manipulate.h. Here, you can add additional functions for
matrix manipulation that will simplify your code.

e For memory allocation you should use the functions provided in the files allocate_free.c and
allocate_free.h.

e The main functions for m1pl and block mlpl should appear in files m1pl.c and block mlpl.c
respectively.

Compilation

Your code should be compilable and executable on the LINUX machines in the Computer Science
school. Your code must comply to the ANSI C specification and should be compiled using the stan-
dard gcc compiler. For your development you should use computers abel-XX (XX is between 01-
35) located in the classroom 019. For the Excel application you can use the terminal server (see
http://www.cs.tau.ac.il/faq/index.php/Terminal Server) or your windows account.

The makefile for m1pl and block mlpl is provided at the website. To compile your programs run:

make mlpl
make block_mlpl

The first command will create an executable mlpl for exercise 2.1. Similarly the second command
will create an executable block mlpl for exercise 2.2. To remove the object and executable files you
can use the command:

make clean

gprof
Instructions for using the gprof command (see man gprof for additional details):

1. Create executable files using the provided makefile. This makefile contains the flag -pg both in
compilation and linkage commands.

2. Run your programs as usual (e.g. mlpl).
3. Run gprof. For example, gprof mlpl > profile.txt.

4. Open and analyze the output file (e.g. less profile.txt). An explanation about the output
format will appear at the end of the output file.

Submission

e The source files (i.e. *.c and *.h files), makefile, and “partners.txt” files for this assignment should
be submitted under ~/soft-proj09/assign2.

Important note: As in exercise 1, make sure that you have correct permissions (755)
for all the directories and files.

e Manual submission (one for each pair) should include: (i) printouts of source files, (ii) solutions to
analysis questions (questions (2)-(5) in Section 2.1, (2)-(3) in Section 2.2). The manual submission
should also include: ID, user-name, and name - of both partners.

Automatic Testing

Matrix multiplication of two input matrices (k > 0, Case 2) will be automatically tested. The output
in this case should be the same as the one provided in the input/output examples on the website. The
running times and their analysis will be checked manually.

Good Luck!

